首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Through a Gross–Pitaevskii equation comprising cubic, quartic, residual, and quintic nonlinearities, we examine the modulational instability (MI) of Bose–Einstein condensates at higher densities in the presence of quantum fluctuations. We obtain an explicit time-dependent criteria for the MI and the instability domains of the condensates. Solitons are generated by suitably exciting the MI, and their stability is analyzed. We find that quantum fluctuations can completely change the instability of condensates by reversing the nature of the effective two-body interactions. The interplay between three-body interactions and quantum fluctuations is shown. Numerical simulations performed agree with analytical predictions.  相似文献   

2.
雍文梅  陈海军 《物理学报》2014,63(15):150302-150302
利用变分法研究了线性和非线性交叉光晶格中偶极玻色-爱因斯坦凝聚(BEC)体系中物质波孤立子的稳定性.选用柱对称高斯型试探波函数,得出参数的Euler-Lagrange方程和体系的有效作用势能,根据有效势能是否具有局域最小值判断体系是否具有稳定孤立子解.结果表明,由于存在接触相互作用的空间调制,在排斥和吸引偶极相互作用下,均能形成稳定的孤立子解.给出了参数空间中存在稳定解的区域和物质波波包宽度随时间的变化曲线.  相似文献   

3.
We analyze the physics of spin-3 Bose-Einstein condensates, and, in particular, the new physics expected in ongoing experiments with condensates of chromium atoms. We first discuss the ground-state properties, which, depending on still unknown chromium parameters, and for low magnetic fields, can present various types of phases. We also discuss the spinor dynamics in chromium spinor condensates, which present significant qualitative differences when compared to other spinor condensates. In particular, dipole-induced spin relaxation may lead for low magnetic fields to transfer of spin into angular momentum similar to the well-known Einstein-de Haas effect. Additionally, a rapid large transference of population between distant magnetic states also becomes possible.  相似文献   

4.
《Physics letters. A》2014,378(16-17):1085-1090
The formations of n-order two-soliton bound states (TSBSs) in the Bose–Einstein condensates with spatiotemporally modulated nonlinearities are studied. Exact analytical expressions of the n-order TSBSs are derived by means of the similarity transformations. Further, the numerical simulations are carried out, consistent with the analytical results very well. The stability analysis shows that the solutions can be stable. Our results indicate that the attractive spatiotemporal inhomogeneous nonlinearities can support n-order TSBSs, which has the potential applications to the generation of matter-wave bright solitons in harmonic traps.  相似文献   

5.
In this paper, we investigate matter-wave solitons in hybrid atomic–molecular Bose–Einstein condensates with tunable interactions and external potentials. Three types of time-modulated harmonic potentials are considered and, for each of them, two groups of exact non-autonomous matter-wave soliton solutions of the coupled Gross–Pitaevskii equation are presented. Novel nonlinear structures of these non-autonomous matter-wave solitons are analyzed by displaying their density distributions. It is shown that the time-modulated nonlinearities and external potentials can support exact non-autonomous atomic–molecular matter-wave solitons.  相似文献   

6.
We investigate exact nonlinear matter wave functions with odd and even parities in the framework of quasi-two-dimensional Bose–Einstein condensates (BECs) with spatially modulated cubic–quintic nonlinearities and harmonic potential. The existence condition for these exact solutions requires that the minimum energy eigenvalue of the corresponding linear Schrödinger equation with harmonic potential is the cutoff value of the chemical potential λ. The competition between two-body and three-body interactions influences the energy of the localized state. For attractive two-body and three-body interactions, the larger the matter wave order number n, the larger the energy of the corresponding localized state. A linear stability analysis and direct simulations with initial white noise demonstrate that, for the same state (fixed n), increasing the number of atoms can add stability. A quasi-stable ground-state matter wave is also found for repulsive two-body and three-body interactions. We also discuss the experimental realization of these results in future experiments. These results are of particular significance to matter wave management in higher-dimensional BECs.  相似文献   

7.
We investigate the dynamics of bright matter wave solitons in spin-1 Bose–Einstein condensates with time modulated nonlinearities. We obtain soliton solutions of an integrable autonomous three-coupled Gross–Pitaevskii (3-GP) equations using Hirota?s method involving a non-standard bilinearization. The similarity transformations are developed to construct the soliton solutions of non-autonomous 3-GP system. The non-autonomous solitons admit different density profiles. An interesting phenomenon of soliton compression is identified for kink-like nonlinearity coefficient with Hermite–Gaussian-like potential strength. Our study shows that these non-autonomous solitons undergo non-trivial collisions involving condensate switching.  相似文献   

8.
The coherent manipulation of Bose–Einstein condensates by far blue detuned optical dipole potentials is discussed in two regimes. The local manipulation of the phase of the condensate wavefunction by temporally applied dipole potentials represents a powerful tool for the design of matter waves. We use this method in particular for the creation of dark solitons in Bose–Einstein condensates and study their dynamics. Spatially inhomogeneous dipole potentials like far blue detuned doughnut laser beams can be used for the creation of Bose–Einstein condensates within a waveguide structure.  相似文献   

9.
We review, aiming at an audience of final year undergraduates, the phenomena observed in, and properties of, microcavity exciton–polariton condensates. These are condensates of mixed light and matter, consisting of superpositions of photons in semiconductor microcavities and excitons in quantum wells. Because of the imperfect confinement of the photon component, exciton–polaritons have a finite lifetime, and have to be continuously re-populated. Therefore, exciton–polariton condensates lie somewhere between equilibrium Bose–Einstein condensates and lasers. We review in particular the evidence for condensation, the coherence properties studied experimentally, and the wide variety of spatial structures either observed or predicted to exist in exciton–polariton condensates, including quantised vortices and other coherent structures. We also discuss the question of superfluidity in a non-equilibrium system, reviewing both the experimental attempts to investigate superfluidity to date, and the theoretical suggestions of how it may be further elucidated.  相似文献   

10.
Hao-Cai Li 《Physics letters. A》2008,372(16):2746-2756
The two-component Bose-Einstein condensates (BECs) trapped in 2D optical lattice potential is studied analytically. A new family of stationary exact solutions of the coupled Gross-Pitaevskii (GP) equations with 2D periodic potential are obtained. In particular, the phase diagram of the system in the trigonometric limit is determined analytically according to the nontrivial phase macroscopic wave functions of the condensates.  相似文献   

11.
We propose an analytical method to study the entangled spatial and spin dynamics of interacting bimodal Bose-Einstein condensates. We show that at particular times during the evolution spatial and spin dynamics disentangle and the spin squeezing can be predicted by a simple two-mode model. We calculate the maximum spin squeezing achievable in experimentally relevant situations with Sodium or Rubidium bimodal condensates, including the effect of the dynamics and of one, two and three-body losses.  相似文献   

12.
In this article, we describe an experimental system for generating Bose–Einstein condensates and controlling the shape and motion of a condensate by using miniaturised magnetic potentials. In particular, we describe the magnetic trap setup, the vacuum system, the use of dispenser sources for loading a high number of atoms into the magneto-optical trap, the magnetic transfer of atoms into the microtrap, and the experimental cycle for generating Bose–Einstein condensates. We present first results on outcoupling of condensates into a magnetic waveguide and discuss influences of the trap surface on the ultra-cold ensembles. Received: 21 August 2002 / Revised version: 10 December 2002 / Published online: 26 February 2003 RID="*" ID="*"Corresponding author. Fax: +49-7071/295-829, E-mail: fortagh@pit.uni-tuebingen.de  相似文献   

13.
The nonlinear lattice — a new and nonlinear class of periodic potentials — was recently introduced to generate various nonlinear localized modes. Several attempts failed to stabilize two-dimensional (2D) solitons against their intrinsic critical collapse in Kerr media. Here, we provide a possibility for supporting 2D matter-wave solitons and vortices in an extended setting — the cubic and quintic model — by introducing another nonlinear lattice whose period is controllable and can be different from its cubic counterpart, to its quintic nonlinearity, therefore making a fully “nonlinear quasi-crystal”.A variational approximation based on Gaussian ansatz is developed for the fundamental solitons and in particular, their stability exactly follows the inverted Vakhitov–Kolokolov stability criterion, whereas the vortex solitons are only studied by means of numerical methods. Stability regions for two types of localized mode — the fundamental and vortex solitons — are provided. A noteworthy feature of the localized solutions is that the vortex solitons are stable only when the period of the quintic nonlinear lattice is the same as the cubic one or when the quintic nonlinearity is constant, while the stable fundamental solitons can be created under looser conditions. Our physical setting (cubic-quintic model) is in the framework of the Gross–Pitaevskii equation or nonlinear Schrödinger equation, the predicted localized modes thus may be implemented in Bose–Einstein condensates and nonlinear optical media with tunable cubic and quintic nonlinearities.  相似文献   

14.
Utilizing the QCD sum rule approach to the behavior of the omega meson in nuclear matter we derive evidence for in-medium changes of particular four-quark condensates from the recent CB-TAPS experiment for the reaction gamma + A --> A' + omega(--> pi0gamma) with A = Nb and LH2.  相似文献   

15.
We experimentally investigate and analyze the rich dynamics in F=2 spinor Bose-Einstein condensates of 87Rb. An interplay between mean-field driven spin dynamics and hyperfine-changing losses in addition to interactions with the thermal component is observed. In particular, we measure conversion rates in the range of 10(-12) cm(3) s(-1) for spin-changing collisions within the F=2 manifold and spin-dependent loss rates in the range of 10(-13) cm(3) s(-1) for hyperfine-changing collisions. We observe polar behavior in the F=2 ground state of 87Rb, while we find the F=1 ground state to be ferromagnetic. We further see a magnetization for condensates prepared with nonzero total spin.  相似文献   

16.
We study the existence and stability of solutions of the two-dimensional nonlinear Schrodinger equation in the combined presence of a parabolic and a periodic potential. The motivating physical example consists of Bose-Einstein condensates confined in an harmonic (e.g., magnetic) trap and an optical lattice. By connecting the nonlinear problem with the underlying linear spectrum, we examine the bifurcation of nonlinear modes out of the linear ones for both focusing and defocusing nonlinearities. In particular, we find real-valued solutions (such as multipoles) and complex-valued ones (such as vortices). A primary motivation of the present work is to develop "rules of thumb" about what waveforms to expect emerging in the nonlinear problem and about the stability of those modes. As a case example of the latter, we find that among the real-valued solutions, the one with larger norm for a fixed value of the chemical potential is expected to be unstable.  相似文献   

17.
We investigate the AdS/QCD duality for the two-point correlation functions of the lowest dimension scalar meson and scalar glueball operators,in the case of the Soft Wall holographic model of QCD.Masses and decay constants as well as gluon condensates are compared to their QCD estimates.In particular,the role of the boundary conditions for the bulk-to-boundary propagators is emphasized.  相似文献   

18.
We variationally determine the dynamics of bright soliton trains composed of harmonically trapped Bose-Einstein condensates with attractive interatomic interactions. In particular, we obtain the interaction potential between two solitons. We also discuss the formation of soliton trains due to the quantum mechanical phase fluctuations of a one-dimensional condensate.  相似文献   

19.
We obtain in terms of the Weierstrass elliptic ?-function, sigma function, and zeta function an explicit parametrized solution of a particular nonlinear, ordinary differential equation. This equation includes, in special cases, equations that occur in the study of both homogeneous and inhomogeneous cosmological models, and also in the dynamic Bose–Einstein condensates–cosmology correspondence, for example.  相似文献   

20.
李锦茴  李志坚 《中国物理 B》2011,20(10):100501-100501
We first present an analytical solution of the single and double solitions of Bose-Einstein condensates trapped in a double square well potential using the multiple-scale method. Then, we show by numerical calculation that a dark soliton can be transmitted through the square well potential. With increasing depth of the square well potential, the amplitude of the dark soliton becomes larger, and the soliton propagates faster. In particular, we treat the collision behaviour of the condensates trapped in either equal or different depths of the double square well potential. If we regard the double square well potential as the output source of the solitons, the collision locations (position and time) between two dark solitons can be controlled by its depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号