首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose and analyze a general mechanism of disorder-induced order in two-component Bose-Einstein condensates, analogous to corresponding effects established for XY spin models. We show that a random Raman coupling induces a relative phase of pi/2 between the two BECs and that the effect is robust. We demonstrate it in one, two, and three dimensions at T=0 and present evidence that it persists at small T>0. Applications to phase control in ultracold spinor condensates are discussed.  相似文献   

2.
We investigate the ground states of weakly interacting bosons in a rotating trap as a function of the number of bosons, N, and the average number of vortices, N(V). We identify the filling fraction nu identical with N/N(V) as the parameter controlling the nature of these states. We present results indicating that, as a function of nu, there is a zero temperature phase transition between a triangular vortex lattice phase, and strongly correlated vortex liquid phases. The vortex liquid phases appear to be the Read-Rezayi parafermion states.  相似文献   

3.
We show that quantum and thermal fluctuations in spin-2 Bose-Einstein condensates lift the accidental degeneracy of the mean-field phase diagram. Fluctuations select the uniaxial (square biaxial) nematic state for scattering lengths a4>a2 (a4相似文献   

4.
Motivated by recent experiments carried out by Spielman's group at NIST, we study a general scheme for generating families of gauge fields, spanning the scalar, spin-orbit, and non-Abelian regimes. The NIST experiments, which impart momentum to bosons while changing their spin state, can in principle realize all these. In the spin-orbit regime, we show that a Bose gas is a spinor condensate made up of two non-orthogonal dressed spin states carrying different momenta. As a result, its density shows a stripe structure with a contrast proportional to the overlap of the dressed states, which can be made very pronounced by adjusting the experimental parameters.  相似文献   

5.
We investigate minimal energy solutions with vortices for an interacting Bose-Einstein condensate in a rotating trap. The atoms are strongly confined along the axis of rotation z, leading to an effective 2D situation in the x-y plane. We first use a simple numerical algorithm converging to local minima of energy. Inspired by the numerical results we present a variational ansatz in the regime where the interaction energy per particle is stronger than the quantum of vibration in the harmonic trap in the x-y plane, the so-called Thomas-Fermi regime. This ansatz allows an easy calculation of the energy of the vortices as function of the rotation frequency of the trap; it gives a physical understanding of the stabilisation of vortices by rotation of the trap and of the spatial arrangement of vortex cores. We also present analytical results concerning the possibility of detecting vortices by a time-of-flight measurement or by interference effects. In the final section we give numerical results for a 3D configuration. Received 16 December 1998 and Received in final form 18 March 1999  相似文献   

6.
The atom optics of Bose-Einstein condensates containing a vortex of circulation one is discussed. We first analyze in detail the reflection of such a condensate falling on an atomic mirror. In a second part, we consider a rotating condensate in the case of attractive interactions. We show that for sufficiently large nonlinearity the rotational symmetry of the rotating condensate is broken. Received 16 September 2002 / Received in final form 17 November 2002 Published online 11 February 2003  相似文献   

7.
We study theoretically the properties of two Bose-Einstein condensates in different spin states, represented by a double Fock state. Individual measurements of the spins of the particles are performed in transverse directions, giving access to the relative phase of the condensates. Initially, this phase is completely undefined, and the first measurements provide random results. But a fixed value of this phase rapidly emerges under the effect of the successive quantum measurements, giving rise to a quasiclassical situation where all spins have parallel transverse orientations. If the number of measurements reaches its maximum (the number of particles), quantum effects show up again, giving rise to violations of Bell type inequalities. The violation of Bell-Clauser-Horne-Shimony-Holt inequalities with an arbitrarily large number of spins may be comparable (or even equal) to that obtained with two spins.  相似文献   

8.
9.
We show that quasi-Nambu-Goldstone (NG) modes, which play prominent roles in high energy physics but have been elusive experimentally, can be realized with atomic Bose-Einstein condensates. The quasi-NG modes emerge when the symmetry of a ground state is larger than that of the Hamiltonian. When they appear, the conventional vacuum manifold should be enlarged. Consequently, topological defects that are stable within the conventional vacuum manifold become unstable and decay by emitting the quasi-NG modes. Contrary to conventional wisdom, however, we show that the topological defects are stabilized by quantum fluctuations that make the quasi-NG modes massive, thereby suppressing their emission.  相似文献   

10.
It has recently been shown that light can be stored in Bose-Einstein condensates for over a second. Here we propose a method for realizing a controlled phase gate between two stored photons. The photons are both stored in the ground state of the effective trapping potential inside the condensate. The collision-induced interaction is enhanced by adiabatically increasing the trapping frequency and by using a Feshbach resonance. A controlled phase shift of π can be achieved in 1 s or less.  相似文献   

11.
Strongly interacting bosons in a two-dimensional rotating square lattice are investigated via a modified Bose-Hubbard Hamiltonian. Such a system corresponds to a rotating lattice potential imprinted on a trapped Bose-Einstein condensate. Second-order quantum phase transitions between states of different symmetries are observed at discrete rotation rates. For the square lattice we study, there are four possible ground-state symmetries.  相似文献   

12.
We propose an experimental scheme to create spin-orbit coupling in spin-3 Cr atoms using Raman processes. By employing the linear Zeeman effect and optical Stark shift, two spin states within the ground electronic manifold are selected, which results in a pseudospin-1/2 model. We further study the ground state structures of a spin-orbit-coupled Cr condensate. We show that, in addition to the stripe structures induced by the spin-orbit coupling, the magnetic dipole-dipole interaction gives rise to the vortex phase, in which a spontaneous spin vortex is formed.  相似文献   

13.
We study the properties of the ground state of nonlinear Schrödinger equations with spatially inhomogeneous interactions and show that it experiences a strong localization on the spatial region where the interactions vanish. At the same time, tunneling to regions with positive values of the interactions is strongly suppressed by the nonlinear interactions and as the number of particles is increased it saturates in the region of finite interaction values. The chemical potential has a cutoff value in these systems and thus takes values on a finite interval. The applicability of the phenomenon to Bose-Einstein condensates is discussed in detail.  相似文献   

14.
Elongated Bose-Einstein condensates (BECs) exhibit strong spatial phase fluctuations even well below the BEC transition temperature. We demonstrate that atom interferometers using such condensates are robust against phase fluctuations; i.e., the relative phase of the split condensate is reproducible despite axial phase fluctuations. However, larger phase fluctuations limit the coherence time, especially in the presence of some asymmetries in the two wells of the interferometer.  相似文献   

15.
We show that as the number of vortices in a three dimensional Bose-Einstein condensate increases, the system reaches a "quantum Hall" regime where the density profile is a Gaussian in the xy plane and an inverted parabolic profile along z. The angular momentum of the system increases as the vortex lattice shrinks. However, Coriolis force prevents the unit cell of the vortex lattice from shrinking beyond a minimum size. Although the recent MIT experiment is not exactly in the quantum Hall regime, it is close enough for the present results to be used as a guide. The quantum Hall regime can be easily reached by moderate changes of the current experimental parameters.  相似文献   

16.
A Bose-Einstein condensate in an external potential consisting of a superposition of a harmonic and a random potential is considered theoretically. From a semiquantitative analysis we find the size, shape, and excitation energy as a function of the disorder strength. For positive scattering length and sufficiently strong disorder the condensate decays into fragments each of the size of the Larkin length L. This state is stable over a large range of particle numbers. The frequency of the breathing mode scales as 1/L(2). For negative scattering length a condensate of size L may exist as a metastable state. These findings are generalized to anisotropic traps.  相似文献   

17.
We study the possible formation of large (mesoscopic) molecular ions in an ultracold degenerate bosonic gas doped with charged particles (ions). We show that the polarization potentials produced by the ionic impurities are capable of capturing hundreds of atoms into loosely bound states. We describe the spontaneous formation of these hollow molecular ions via phonon emission and suggest an optical technique for coherent stimulated transitions of condensate atoms into a specific bound state. These results open up new possibilities for manipulating tightly confined ensembles.  相似文献   

18.
The relative phase of two initially independent Bose-Einstein condensates can be laser cooled to unite the two condensates by putting them into a ring cavity and coupling them with an internal Josephson junction. First, we show that this phase cooling process already appears within a semiclassical model. We calculate the stationary states, find regions of bistable behavior, and suggest a Ramsey-type experiment to measure the buildup of phase coherence between the condensates. We also study quantum effects and imperfections of the system.  相似文献   

19.
20.
薛鹏  秦豪  唐宝  詹翔  边志浩  李剑 《中国物理 B》2014,(11):198-201
We investigate a kind of solitons in the two-component Bose-Einstein condensates with axisymmetric configurations in the R2 × S1 space. The corresponding topological structure is referred to as Hopfion. The spin texture differs from the conventional three-dimensional (3D) skyrmion and knot, which is characterized by two homotopy invariants. The stability of the Hopfion is verified numerically by evolving the Gross-Pitaevskii equations in imaginary time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号