首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forsterite doped with Cr4+ ions is prepared in silicon-based structures according to a simple technique. These structures are of interest due to the characteristic luminescence in the near-IR range. Forsterite is synthesized by impregnation of porous silicon layers on n+-Si and p+-Si substrates with subsequent annealing in air. A photoluminescence response at a wavelength of 1.15 μm is observed at room temperature in porous silicon layers doped with magnesium and chromium for which the optimum annealing temperature is close to 700°C. The photoluminescence spectrum of porous silicon on the p+-Si substrate contains a broad band at a wavelength of approximately 1.2 μm. This band does not depend on the annealing temperature and the magnesium and chromium content and is most likely associated with the presence of dislocations in silicon. The experimental EPR data and eletrical properties of the structures are discussed. It is found that layers of pure porous silicon and chromium-doped porous silicon on n+-Si subtructures exhibit indications of discrete electron tunneling.  相似文献   

2.
Experimental results on the high-frequency capacitance-voltage characteristic of a photoelectric solar energy converter based on the n +-p junction with a thin porous silicon film on the frontal surface are considered. It is shown that the capacitance-voltage characteristic is determined by the surface metal-insulator-semiconductor (MIS) structure formed as a result of growing of a porous silicon layer by electrochemical anode etching. The effective thickness of the insulator layer of the MIS structure, the impurity concentration in its semiconductor region, and the density of surface states are determined.  相似文献   

3.
A porous silicon layer as a getter of uncontrolled impurities has been prepared by implantation of Sb+ into silicon and subsequent thermal treatments. The lifetime of nonequilibrium charge carriers in n- and p-type silicon wafers with a getter layer is 3–4 times longer than that without a getter.  相似文献   

4.
Photoprocesses initiated on the surface of porous silicon irradiated with laser radiation with wavelengths (λ = 266, 337, and 532 nm) in a wide range of intensities (up to 2 × 107W/cm2) were investigated. Laser-induced luminescence and laser mass-spectrometry were used as experimental procedures. X-ray reflection was used to determine the parameters of the porous silicon films. The photoluminescence spectra obtained at different wavelengths and low intensities were analyzed. This analysis showed that for an optically thin layer of porous silicon the luminescence spectrum does not depend on the wavelength of the exciting radiation. This indicates the existence of a separate system of levels in porous silicon that are responsible for the luminescence. The behavior of the photoluminescence spectra as a function of the intensity q of the exciting radiation was investigated. It was shown that the luminescence intensity is a nonlinear function of q. At high intensities of the exciting radiation, the luminescence intensity saturates and a short-wavelength shift of the spectra is observed; this is due to the high concentrations of photoexcited carriers. This increases the probability of the experimentally observed nonequilibrium photodesorption of H2 and Si from the surface of porous silicon.  相似文献   

5.
The structural and optical properties of porous silicon prepared by anodic etching of an n-Si(111) wafer with a p +-homoepitaxial layer on one side are studied by scanning electron microscopy and multiple-crystal X-ray diffraction. A considerable difference between the microstructures on the sides of the wafer is found. Upon aging for 4.5 months, diffraction peaks of the por-Si structures shift from that of the substrate by δθ = ?42″ for the n-Si porous layer and ?450″ for the p +-Si porous layer. The photoluminescence band associated with the p +-layer is twice as narrow as the band associated with the n-layer and is shifted toward shorter wavelengths (higher energies) by 0.4 eV, with the intensities of the bands being the same.  相似文献   

6.
The effect of combined doping by shallow donor and acceptor impurities on boosting the quantum yield of porous-silicon photoluminescence (PL) in the visible and near IR range was studied using phosphorus and boron ion implantation. Nonuniform doping of samples and subsequent oxidizing annealing were performed before and after porous silicon was formed on silicon single crystals strongly doped by arsenic or boron up to ≈1019 cm?3. The concentration of known Pb centers of nonradiative recombination was controlled by electron paramagnetic resonance. It is shown that there is an optimal joined content of shallow donors and acceptors that provides a maximum PL intensity in the vicinity of the red part of the visible spectrum. According to estimates, the PL quantum yield in the transitional n ++-p + or p ++-n + layer of porous silicon increases by two orders of magnitude as compared to that in porous silicon formed on silicon not subjected to ion irradiation.  相似文献   

7.
In this work, we study the effect of the thickness and porous structure of silicon carbide (PSC) layers on the electrical properties of Schottky photodiodes by using a palladium (Pd) layer deposited on non-porous silicon carbide (SiC) and porous-SiC (PSC) layers. The non-porous and porous-SiC layers were realized on a p-type silicon (Si(1 0 0)) substrate by pulsed laser deposition using a KrF laser (248 nm) and thermal deposition of a thin Pd layer. The porous structure of the SiC layer deposited was developed by an electrochemical (anodization) method. The electrical measurements were made at room temperature (295 K) in an air ambience. The effect of the porous surface structure and the thickness of the SiC layer were investigated by evaluating electrical parameters such as the ideality factor (n) and barrier height (?Bp). The thickness of the porous layer significantly affects the electrical properties of the Schottky photodiodes. Analysis of current-voltage (I-V) characteristics showed that the forward current might be described by a classical thermal emission theory. The ideality factor determined by the I-V characteristics was found to be dependent on the SiC thickness a value For a thin SiC layer (0.16 μm) n was around 1.325 with a barrier height 0.798 eV, while for a thick layer (1.6 μm), n and ?Bp were 1.026 and 0.890 eV, respectively for Pd/SiC-pSi. These results indicate Schottky photodiodes with high performance are obtained for thicker SiC layer and for thin layer of PSC. This effect showed the uniformity of the SiC layer. In the same case the ideality factor (n) decreases for Pd/PSC-pSi(1 0 0) for low SiC thickness by report of Pd/PSC-pSi(1 0 0) Schottky photodiodes, but for Pd/PSC-pSi(1 0 0) n increase for large SiC thickness layer. We notice that the barrier height (?Bp) was reversely depend by report of ideality factor. A spectral response value of (SR) of 34 mA/W at λ = 400 nm was measured for Pd/0.16 μm SiC-pSi Schottky photodiode with low SiC thickness. On the other hand, a value of SR = 0.14 mA/W at λ = 900 nm was obtained when we used PSC layer (Pd/PSC-pSi(1 0 0)). A reverse behaviour occurs for thicker SiC layer. Finally, it was found that the thickness and surface porous structure have strong effect on sensitivity.  相似文献   

8.
Thin films of 1-pentyl-2/,3/-difluoro-3///-methyl-4////-octyl-p-quinquephenyl and 9,10-Bis (4-pentylphenylethynyl)antracene organic molecules were grown on optical glass, silicon and porous silicon substrates. First optical and luminescent properties of such hybrid composites are thoroughly studied using spectroscopic techniques. The strong decrease of aggregation in thin films of 1-pentyl-2/,3/-difluoro-3///-methyl-4////-octyl-p-quinquephenyl on porous silicon was observed. The possibility of simultaneous red, green and blue tunable photon emission from organic film/porous silicon hybrid structure is demonstrated.  相似文献   

9.
Blue Photoluminescence of Oxidized Films of Porous Silicon   总被引:1,自引:0,他引:1  
It is found that the films of n +-type porous silicon of low (10–50%) porosity exhibit photoluminescence in the region 400–500 nm after a 5-month storage in an air atmosphere. The spectrum of blue photoluminescence of the least porous but strongly oxidized films has maxima at 417, 435, and 465 nm. The same spectrum structure manifests itself upon the introduction of an Er3+- and Yb3+-containing complex. The mechanisms of blue photoluminesence are discussed.  相似文献   

10.
The influence of surface treatment of porous silicon (PS) in lanthanum (La) containing solution during different times on its photoluminescence and electrical properties has been investigated. For this purpose, chemical composition, structural, vibrational, photoluminescence and electrical characteristics of the porous silicon layer with and without lanthanum were examined using X-ray diffractometry (XRD), energy dispersive X-ray (EDX) spectroscopy, Fourier transmission infrared (FTIR) spectroscopy, photoluminescence (PL) spectroscopy and current–voltage (IV) measurements. The results indicate that porous silicon layers treated with lanthanum exhibit an enhancement of photoluminescence intensity and show an improvement current intensity compared to untreated porous silicon layer.  相似文献   

11.
In this paper, epitaxial silicon films were grown on annealed double layer porous silicon by LPCVD. The evolvement of the double layer porous silicon before and after thermal annealing was investigated by scanning electron microscope. X-ray diffraction and Raman spectroscopy were used to investigate the structural properties of the epitaxial silicon thin films grown at different temperature and different pressure. The results show that the surface of the low-porosity layer becomes smooth and there are just few silicon-bridges connecting the porous layer and the substrate wafer. The qualities of the epitaxial silicon thin films become better along with increasing deposition temperature. All of the Raman peaks of silicon films with different deposition pressure are situated at 521 cm−1 under the deposition temperature of 1100 °C, and the Raman intensity of the silicon film deposited at 100 Pa is much closer to that of the monocrystalline silicon wafer. The epitaxial silicon films are all (4 0 0)-oriented and (4 0 0) peak of silicon film deposited at 100 Pa is more symmetric.  相似文献   

12.
本文中研究了O+(200keV,1.8×1018/cm2)和N+(190keV,1.8×1018/cm2)注入Si形成SOI(Silicon on Insulator)结构的界面及埋层的化学组成。俄歇能谱的测量和研究结果表明:注O+的SOI结构在经1300℃,5h退火后,其表层Si和氧化硅埋层的界面存在一个不饱和氧化硅状态,氧化硅埋层是由SiO2相和这不饱和氧化硅态组成,而且氧化硅埋层和体硅界面不同于表层Si和氧化硅埋层界面;注N+的SOI结构在经1200℃,2h退火后,其氮化硅埋层中存在一个富N的疏松夹层,表层Si和氮化硅埋层界面与氮化硅埋层和体硅界面性质亦不同。这些结果与红外吸收和透射电子显微镜及离子背散射谱的分析结果相一致。还对两种SOI结构界面与埋层的不同特征的原因进行了分析讨论。 关键词:  相似文献   

13.
The black silicon has been produced by plasma immersion ion implantation (PIII) process. The microstructure and optical reflectance are characterized by field emission scanning electron microscope and spectrophotometer. Results show that the black silicon appears porous or needle-like microstructure with the average reflectance of 4.87% and 2.12%, respectively. The surface state is investigated by X-ray photoelectron spectroscopy (XPS) technique. The surface of the black silicon is composed of silicon, carbon, oxygen and fluorine element. The formation of SixOyFz in the surface of black silicon can be proved clearly by the O 1s, F 1s and Si 2p XPS spectra. The formation mechanism of the black silicon produced by PIII process can be obtained from XPS results. The porous or needle-like structure of the black silicon will be formed under the competition of SFx+ (x  5) and F+ ions etching effect, SixOyFz passivation and ion bombardment.  相似文献   

14.
Morphology, composition, and optical properties of porous silicon on single-crystal-silicon substrates and p-n junctions are studied. Substrate orientation, type of conduction, and composition of etching agent are varied to obtain nano-, meso-, and microporous silicon and multilayer porous structures. A correlation of the photoluminescence intensity and intensity of the IR absorption band peaking at 616 cm?1 is related to the presence of Si-Si bonds.  相似文献   

15.
A mechanism for self-organization of a regular system of pores in porous silicon is proposed. According to this mechanism, the self-organization obeys the general kinetic laws for a system of charge carriers. The mean interpore spacing in porous silicon prepared from p-Si and the anodizing current density required for synthesizing porous silicon through anodic etching are evaluated in terms of the proposed mechanism. The results obtained are in good agreement with the available experimental data. The dependence of the mean interpore spacing on the carrier concentration in the initial silicon is predicted to be similar to the function L(n) ~ n?1/2. The validity of the proposed mechanism is confirmed by computer simulation.  相似文献   

16.
Micro-Raman spectra of porous silicon (PS) samples as-formed, from stain etching process using heavily doped silicon wafers, and after 750 days storage in air were analyzed around Si peak (300-600 cm−1) and at photoluminescence (PL) range (300-8000 cm−1). The first-order Raman spectra in the vicinity of Si peak were fitted from phonon confinement model including a term taking into account the amorphous phase. This analysis allowed the determination of the correlation length, which corresponds to the crystallite size, also considering the PS natural oxidation process. The photoluminescence band, generated by Si crystallites located on the outermost part of the PS layer, was also fitted with a Gaussian distribution. In order to investigate the porous silicon nanostructure, the micro-Raman spectra were measured for different sets of porous silicon samples. These spectra showed good reproducibility and the effects of the natural oxidation at different periods. A slight decrease in the crystallite size was observed for all samples sets studied, while the spectral part related to the amorphous phase did not describe significant changes. The central position of PL band, analyzed after the oxidation process, exhibited consistently a shift to higher energies. In addition, top view high resolution scanning electron microscopy (HRSEM) images also confirmed a reasonable reproducibility and homogeneity. The results showed that after storing in air, natural oxidation can modify the Si crystallites size at the surface but not increase the amorphous phase.  相似文献   

17.
卢鹏  侯国付  袁育杰  杨瑞霞  赵颖 《物理学报》2010,59(6):4330-4336
采用射频化学气相沉积法,制备了一系列具有不同晶化率n型掺杂层的n-i-p结构微晶硅薄膜太阳电池.发现本征层的结构很大程度上依赖于n型掺杂层的结构,特别是n/i界面处的孵化层厚度以及本征层的晶化率.该系列太阳电池在100 mW/cm2的白光下照射400 h,实验结果证实了本征层晶化率最大(Xc(i)=65%)的电池性能表现出最低的光致衰退率.拥有非晶/微晶过渡区n型掺杂层的电池(本征层晶化率Xc(i)=54%)分别 关键词: 微晶硅 n-i-p结构太阳电池 光致衰退 晶化率  相似文献   

18.
《Composite Interfaces》2013,20(5):441-448
Zinc oxide thin films have been deposited onto porous silicon (PSi) substrates at high growth rates by radio frequency (RF) sputtering using a ZnO target. The advantages of the porous Si template are economical and it provides a rigid structural material. Porous silicon is applied as an intermediate layer between silicon and ZnO films and it contributed a large area composed of an array of voids. The nanoporous silicon samples were adapted by photo electrochemical (PEC) etching technique on n-type silicon wafer with (111) and (100) orientation. Micro-Raman and photoluminescence (PL) spectroscopy are powerful and non-destructive optical tools to study vibrational and optical properties of ZnO nanostructures. Both the Raman and PL measurements were also operated at room temperature. Micro-Raman results showed that the A1(LO) of hexagonal ZnO/Si(111) and ZnO/Si(100) have been observed at around 522 and 530 cm–1, re- spectively. PL spectra peaks are distinctly apparent at 366 and 368 cm–1 for ZnO film grown on porous Si(111) and Si(100) substrates, respectively. The peak luminescence energy in nanocrystalline ZnO on porous silicon is blue-shifted with regard to that in bulk ZnO (381 nm). The Raman and PL spectra pointed to oxygen vacancies or Zn interstitials which are responsible for the green emission in the nanocrystalline ZnO.  相似文献   

19.
Current–voltage and noise characteristics of porous silicon (PS)/single crystalline silicon (SCS) samples were measured under exposure to dry air, air +0.4% CO, dry air +1.7% CO, and dry air+ethyl alcohol vapor. The samples have a sandwich structure comprising Al/PS/SCS/Al. For the dry air +CO mixtures, the noise level was sensitive not only to the presence of CO but also to its percentage, and an increase of the CO concentration led to a change in the spectral density function of the low-frequency noise.  相似文献   

20.
n型有序多孔硅基氧化钨室温气敏性能研究   总被引:3,自引:0,他引:3       下载免费PDF全文
胡明  刘青林  贾丁立  李明达 《物理学报》2013,62(5):57102-057102
利用电化学腐蚀方法制备了n型有序多孔硅, 并以此为基底用直流磁控溅射法在其表面溅射不同厚度的氧化钨薄膜. 利用X射线和扫描电子显微镜表征了材料的成分和结构, 结果表明, 多孔硅的孔呈柱形有序分布, 溅射10 min的WO3薄膜是多晶结构, 比较松散地覆盖在整个多孔硅的表面. 分别测试了多孔硅和多孔硅基氧化钨在室温条件下对二氧化氮的气敏性能, 结果表明, 相对于多孔硅, 多孔硅基氧化钨薄膜对二氧化氮的气敏性能显著提高. 对多孔硅基氧化钨复合结构的气敏机理分析认为, 多孔硅和氧化钨薄膜复合形成的异质结对良好的气敏性能起到主要作用, 氧化钨薄膜表面出现了反型层引起了气敏响应时电阻的异常变化. 关键词: 有序多孔硅 氧化钨薄膜 二氧化氮 室温气敏性能  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号