共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactions of the late third-row transition metal cation Au(+) with H(2), D(2), and HD are examined using guided ion beam tandem mass spectrometry. A flow tube ion source produces Au(+) in its (1)S (5d(10)) electronic ground state level. Corresponding state-specific reaction cross sections for forming AuH(+) and AuD(+) as a function of kinetic energy are obtained and analyzed to give a 0 K bond dissociation energy of D(0)(Au(+)-H) = 2.13 ± 0.11 eV. Quantum chemical calculations at the B3LYP∕HW+∕6-311+G(3p) and B3LYP∕Def2TZVPP levels performed here show good agreement with the experimental bond energy. Theory also provides the electronic structures of these species and the reactive potential energy surfaces. We also compare this third-row transition metal system with previous results for analogous reactions of the first-row and second-row congeners, Cu(+) and Ag(+). We find that Au(+) has a stronger M(+)-H bond, which can be explained by the lanthanide contraction and relativistic effects that alter the relative size of the valence s and d orbitals. Results from reactions with HD provide insight into the reaction mechanism and indicate that ground state Au(+) reacts largely via a direct mechanism, in concordance with the behavior of the lighter group 11 metal ions, but includes more statistical behavior than these metals as well. 相似文献
2.
We present the kinetic energy dependence of reactions of the late third-row transition metal cation Ir(+) with H(2), D(2), and HD measured using a guided ion beam tandem mass spectrometer. A flow tube ion source produces Ir(+) ions in its electronic ground state term and primarily in the ground spin-orbit level. Corresponding state-specific reaction cross sections are obtained. The kinetic energy dependence of the cross sections for forming IrH(+) and IrD(+) are analyzed to give a 0 K bond dissociation energy of D(0)(Ir(+)-H) = 3.12 +/- 0.06 eV. Ab initio calculations at the B3LYP/HW+/6-311+G(3p), BHLYP/HW+/6-311+G(3p), and QCISD(T)/HW+/6-311+G(3p) levels performed here show reasonable agreement with the experimental bond energies and with the previous theoretical values available. Theory also provides the electronic structures of these species and the reactive potential energy surfaces. We also compare this third-row transition metal system with those of the first-row and second-row congeners Co(+) and Rh(+). We find that Ir(+) has a stronger M(+)-H bond, which can be explained by the lanthanide contraction and relativistic effects that alter the relative size of the valence s and d orbitals. Results from reactions with HD provide insight into the reaction mechanisms and indicate that Ir(+) reacts largely via an insertion mechanism, in contrast with the lighter group 9 metal ions Co(+) and Rh(+) which react via direct mechanisms. 相似文献
3.
The kinetic energy dependences of reactions of the third-row transition metal cation Hf(+) with H(2), D(2), and HD were determined using a guided ion beam tandem mass spectrometer. A flow tube ion source produces Hf(+) in its (2)D (6s(2)5d(1)) electronic ground state level. Corresponding state-specific reaction cross sections are obtained. The kinetic energy dependences of the cross sections for the endothermic formation of HfH(+) and HfD(+) are analyzed to give a 0 K bond dissociation energy of D(0)(Hf(+)-H)=2.11±0.08 eV. Quantum chemical calculations at several levels of theory performed here generally overestimate the experimental bond energy but results obtained using the Becke-half-and-half-LYP functional show good agreement. Theory also provides the electronic structures of these species and the reactive potential energy surfaces. Results from the reactions with HD provide insight into the reaction mechanisms and indicates that Hf(+) reacts via a statistical mechanism. We also compare this third-row transition metal system with the first-row and second-row congeners, Ti(+) and Zr(+), and find that Hf(+) has a weaker M(+)-H bond. As most third-row transition metal hydride cation bonds exceed their lighter congeners, this trend is unusual but can be understood using promotion energy arguments. 相似文献
4.
《Chemical physics letters》1985,117(1):67-70
The rate coefficients k for the nearly thermoneutral atom abstraction reactions of N+ ions with H2, HD and D2 have been determined as a function of ion-molecule centre-of-mass energy, KEcm, in a SIFDT apparatus, over the range of KEcm from thermal energy at 300 K to ≈ 0.5 eV. From Arrhenius-type plots of ln k versus (KEcm)−1, values of the thermicities of the reactions, ΔE, have been determined. The differences in the values of ΔE obtained for the reactions are accounted for by differences in the vibrational zero-point energies of the reactant and product molecules. From the data, the absolute proton affinity of the N atom is found to be 3.531 eV. 相似文献
5.
Bernice L. Kickel James B. Griffin P. B. Armentrout 《Zeitschrift für Physik D Atoms, Molecules and Clusters》1992,24(2):101-110
Guided ion beam mass spectrometry is used to measure the cross sections as a function of kinetic energy for reaction of SiH4 with O+(4S), O 2 + (2Πg,v=0), N+(3P), and N 2 + (2Σ g + ,v=0). All four ions react with silane by dissociative charge-transfer to form SiH m + (m=0?3), and all but N 2 + also form SiXH m + products where (m=0?3) andX=O, O2 or N. The overall reactivity of the O+, O 2 + , and N+ systems show little dependence on kinetic energy, but for the case of N 2 + , the reaction probability and product distribution relies heavily on the kinetic energy of the system. The present results are compared with those previously reported for reactions of the rare gas ions with silane [13] and are discussed in terms of vertical ionization from the 1t 2 and 3a 1 bands of SiH4. Thermal reaction rates are also provided and dicussed. 相似文献
6.
A guided ion beam tandem mass spectrometer is used to examine the kinetic energy dependence of reactions of the third-row transition metal cation, Re(+), with molecular hydrogen and its isotopologues. A flow tube ion source produces Re(+) in its (7)S(3) electronic ground state. Reaction with H(2), D(2), and HD forms Re H(+)(Re D(+)) in endothermic processes. Modeling of the endothermic reaction cross sections yields the 0 K bond dissociation energy of D(0)(Re(+)-H)=2.29+/-0.07 eV (221+/-6 kJ/mol). The experimental thermochemistry is consistent with ab initio calculations, performed here and in the literature. Theory also provides the electronic structures of these species and is used to examine the reactive potential energy surfaces. Results from reactions with HD provide insight into the reaction mechanisms and indicate that the late metal ion, Re(+), reacts largely via a statistical mechanism. This is consistent with the potential energy surfaces which locate a stable Re H(2) (+)((5)B(2)) complex. Results for this third-row transition metal system are compared with the first-row congener (Mn(+)) and found to have much higher reactivity towards dihydrogen and stronger M(+)-H bonds. These differences can be attributed to efficient coupling among surfaces of different spin along with lanthanide contraction and relativistic effects. 相似文献
7.
A simple theoretical model is developed to predict the state-to-state dynamics of direct chemical reactions. Motivated by traditional ideas from transition state theory, expressions are derived for the reactive S matrix that may be computed using the local transition state dynamics. The key approximation involves the use of quantum bottleneck states to represent the near separable dynamics taking place near the transition state. Explicit expressions for the S matrix are obtained using a Franck-Condon treatment for the inelastic coupling between internal states of the collision complex. It is demonstrated that the energetic thresholds for various initial reagent states of the D+H(2) reaction can be understood in terms of our theory. Specifically, the helicity of the reagent states are found to correlate directly to the symmetry of the quantum bottleneck states, which thus possess very different thresholds. Furthermore, the rotational product state distributions for D+H(2) are found to be associated with interfering pathways through the quantum bottleneck states. 相似文献
8.
Jing Zhang Shoubao Gao Yuzhi Song Qingtian Meng 《International journal of quantum chemistry》2015,115(4):231-238
The N(4S)+H2 reaction and its isotopic variants have been investigated by means of time‐dependent quantum wave packet with split operator method on the ground state potential energy surface (Zhai and Han, J. Chem. Phys. 2011, 135, 104314). The reaction probabilities, integral cross sections, branching ratio of the integral cross sections, and effect of vibrational excitation of H2, HD, and D2 diatomic molecules are presented and discussed. The results reveal that the intramolecular isotopic effect is greater than the intermolecular one, and that the vibrational excitation of the diatomic molecules can promote the progress of this reaction. In addition, a limited number of rigorous Coriolis coupling calculations of the integral cross sections of the N(4S)+H2 reaction have been carried out. Also shown is that since the Coriolis coupling plays a small part in this accurate quantum calculation, the cheaper centrifugal sudden calculations here reported are effective for this reactive system. © 2014 Wiley Periodicals, Inc. 相似文献
9.
Dorta-Urra A Zanchet A Roncero O Aguado A Armentrout PB 《The Journal of chemical physics》2011,135(9):091102
A quasi-classical study of the endoergic Au(+)((1)S) + H(2)(X(1)Σ(g)(+)) → AuH(+) ((2)Σ(+)) + H((2)S) reaction, and isotopic variants, is performed to compare with recent experimental results [F. Li, C. S. Hinton, M. Citir, F. Liu, and P. B. Armentrout, J. Chem. Phys. 134, 024310 (2011)]. For this purpose, a new global potential energy surface has been developed based on multi-reference configuration interaction ab initio calculations. The quasi-classical trajectory results show a very good agreement with the experiments, showing the same trends for the different isotopic variants of the hydrogen molecule. It is also found that the total dissociation into three fragments, Au(+)+H+H, is the dominant reaction channel for energies above the H(2) dissociation energy. This results from a well in the entrance channel of the potential energy surface, which enhances the probability of H-Au-H insertion. 相似文献
10.
The reaction D + H2 → HD + H has been investigated in two molecular beam scattering experiments. Angular and time-of-flight distributions have been measured for the initial vibrational ground state (v = 0) at a most probable collision energy of Ecm = 1.5 eV and for the first vibrational excited state (v = 1) at Ecm = 0.28 eV with the same apparatus. Results for the ground-state experiment are compared with quasiclassical trajectory calculations(QCT) on the LSTH-hypersurface transformed into the laboratory system and averaged over the apparatus distributions. The agreement isquite satisfactory. At this high collision energy the HD products are no longer scattered in a backward direction but in a wide angular region concentrated about θ = 90° in the center-of-mass system. The absolute reactive cross section has been determined and the agreement with the theoretical value from QCT calculations is within the experimental error. The high sensitivity of the experiment to different properties of the doubly differential cross section has also been demonstrated. A preliminary evaluation of the experiment with initial vibrational excitation (v = 1) shows that the HD-product molecules are preferably backward scattered and the change of internal energy is small supporting the concept of a reaction which is adiabatic with respect to the internal degrees of freedom. 相似文献
11.
Asvany O Hugo E Müller F Kühnemann F Schiller S Tennyson J Schlemmer S 《The Journal of chemical physics》2007,127(15):154317
The method of laser induced reaction is used to obtain high-resolution IR spectra of H2D+ and D2H+ in collision with n-H2 at a nominal temperature of 17 K. For this purpose three cw-laser systems have been coupled to a 22-pole ion trap apparatus, two commercial diode laser systems in the ranges of 6100-6600 cm(-1) and 6760-7300 cm(-1), respectively, and a high-power optical parametric oscillator tunable in the range of 2600-3200 cm(-1). In total, 27 new overtone and combination transitions have been detected for H2D+ and D2H+, as well as a weak line in the nu1 vibrational band of H2D+ (2(20)<--1(01)) at 3164.118 cm(-1). The line positions are compared to high accuracy ab initio calculations, showing small but mode-dependent differences, being largest for three vibrational quanta in the nu2 symmetric bending of H2D+. Within the experimental accuracy, the relative values of the ab initio predicted Einstein B coefficients are confirmed. 相似文献
12.
A thorough theoretical investigation of the reactions between S(1D) and various hydrogen isotopomers (H2, D2, and HD) has been carried out using a recent ab initio potential energy surface. State-resolved integral and differential cross sections, thermal rate constants, and their dependence on energy or temperature were obtained from quantum mechanical capture probabilities within a statistical model. For comparison, the J=0 reaction probabilities were also computed using an exact wave packet method. The statistical results are in excellent agreement with available exact differential and integral cross sections. The comparison with experimental results shows that the agreement is reasonably good in general, but some significant differences exist, particularly for the SD/SH branching ratio in the S(1D)+HD reaction. 相似文献
13.
Kumada T 《The Journal of chemical physics》2006,124(9):94504
Tunneling chemical reactions D + H2 --> DH + H and D + DH --> D2 + H in solid HD-H2 and D2-H2 mixtures were studied in the temperature range between 4 and 8 K. These reactions were initiated by UV photolysis of DI molecules doped in these solids for 30 s and followed by measuring the time course of electron-spin-resonance (ESR) intensities of D and H atoms. ESR intensity of D atoms produced by the photolysis decreases but that of H atoms increases with time. Time course of the D and H intensities has the fast and slow processes. The fast process, which finishes within approximately 300 s after the photolysis, is assigned to the reaction of D atom with one of its nearest-neighboring H2 molecules, D(H2)n(HD)(12-n) --> H(H2)(n-1)(HD)(13-n) or D(H2)n(D2)(12-n) --> H(HD)(H2)(n-1)(D2)(12-n) for 12 > or = n > or = 1. Rate constant for the D + H2 reaction between neighboring D atom-H2 molecule pair is determined to be (7.5 +/- 0.7) x 10(-3) s(-1) in solid HD-H2 and (1.3+/-0.3) x 10(-2) s(-1) in D2-H2 at 4.1 K, which is very close to that calculated based on the theory of chemical reaction in gas phase by Hancock et al. [J. Chem. Phys. 91, 3492 (1989)] and Takayanagi and Sato [J. Chem. Phys. 92, 2862 (1990)]. This rate constant was found to be independent of temperature up to 7 K within experimental error of +/-30%. The slow process is assigned to the reaction of D atom produced in a cage fully surrounded by HD or D2 molecules, D(HD)12 or D(D2)12. This D atom undergoes the D + DH reaction with one of its nearest-neighboring HD molecules in solid HD-H2 or diffuses to the neighbor of H2 molecules to allow the D + H2 reaction in solid HD-H2 and D2-H2. The former is the main channel in solid HD-H2 below 6 K where D atoms diffuse very slowly, whereas the latter dominates over the former above 6 K. Rate for the reactions in the slow process is independent of temperature below 6 K but increases with the increase in temperature above 6 K. We found that the increase is due to the increase in hopping rate of D atoms to the neighbor of H2 molecules. Rate constant for the D + DH reaction was found to be independent of temperature up to 7 K as well. 相似文献
14.
A dynamics study [cross section and microscopic mechanism versus collision energy (E(T))] of the reaction O+ + H2 --> OH+ + H, which plays an important role in Earth's ionosphere and interstellar chemistry, was conducted using the quasiclassical trajectory method, employing an analytical potential energy surface (PES) recently derived by our group [R. Martinez et al., J. Chem. Phys. 120, 4705 (2004)]. Experimental excitation functions for the title reaction, as well as its isotopic variants with D2 and HD, were near-quantitatively reproduced in the calculations in the very broad collision energy range explored (E(T) = 0.01-6.0 eV). Intramolecular and intermolecular isotopic effects were also examined, yielding data in good agreement with experimental results. The reaction occurs via two microscopic mechanisms (direct and nondirect abstraction). The results were satisfactorily interpreted based on the reaction probability and the maximum impact parameter dependences with E(T), and considering the influence of the collinear [OHH]+ absolute minimum of the PES on the evolution from reactants to products. The agreement between theory and experiment suggests that the reaction mainly occurs through the lowest energy PES and nonadiabatic processes are not very important in the wide collision energy range analyzed. Hence, the PES used to describe this reaction is suitable for both kinetics and dynamics studies. 相似文献
15.
Jambrina PG Alvariño JM Gerlich D Hankel M Herrero VJ Sáez-Rábanos V Aoiz FJ 《Physical chemistry chemical physics : PCCP》2012,14(10):3346-3359
An extensive set of experimental measurements on the dynamics of the H(+) + D(2) and D(+) + H(2) ion-molecule reactions is compared with the results of quantum mechanical (QM), quasiclassical trajectory (QCT), and statistical quasiclassical trajectory (SQCT) calculations. The dynamical observables considered include specific rate coefficients as a function of the translational energy, E(T), thermal rate coefficients in the 100-500 K temperature range. In addition, kinetic energy spectra (KES) of the D(+) ions reactively scattered in H(+) + D(2) collisions are also presented for translational energies between 0.4 eV and 2.0 eV. For the two reactions, the best global agreement between experiment and theory over the whole energy range corresponds to the QCT calculations using a gaussian binning (GB) procedure, which gives more weight to trajectories whose product vibrational action is closer to the actual integer QM values. The QM calculations also perform well, although somewhat worse over the more limited range of translational energies where they are available (E(T) < 0.6 eV and E(T) < 0.2 eV for the H(+) + D(2) and D(+) + H(2) reactions, respectively). The worst agreement is obtained with the SQCT method, which is only adequate for low translational energies. The comparison between theory and experiment also suggests that the most reliable rate coefficient measurements are those obtained with the merged beams technique. It is worth noting that none of the theoretical approaches can account satisfactorily for the experimental specific rate coefficients of H(+) + D(2) for E(T)≤ 0.2 eV although there is a considerable scatter in the existing measurements. On the whole, the best agreement with the experimental laboratory KES is obtained with the simulations carried out using the state resolved differential cross sections (DCSs) calculated with the QCT-GB method, which seems to account for most of the observed features. In contrast, the simulations with the SQCT data predict kinetic energy spectra (KES) considerably cooler than those experimentally determined. 相似文献
16.
The exchange processes of D + H(2)O and D + HOD reactions are studied using initial state-selected time-dependent wave packet approach in full dimension. The total reaction probabilities for different partial waves, together with the integral cross sections, are obtained both by the centrifugal sudden (CS) approximation and exact coupled-channel (CC) calculations, for the H(2)O(HOD) reactant initially in the ground rovibrational state. In the CC calculations, small resonance peaks in the reaction probabilities and quick diminishing of the resonance peaks with the increase of total angular momenta J do not lead to clear step-like features just above the threshold in the cross sections for the title reactions, which are different in other isotopically substituted reactions where the hydrogen atom was included as the reactant instead of the deuterium atom [B. Fu, Y. Zhou, and D. H. Zhang, Chem. Sci. 3, 270 (2012); B. Fu and D. H. Zhang, J. Phys. Chem. A 116, 820 (2012)]. It is interesting that the shape resonance-induced features resulting from the reaction tunneling are significantly diminished accordingly in the reactions of the deuterium atom and H(2)O or HOD, owing to the weaker tunneling capability of the reagent deuterium atom in the title reactions than the reagent hydrogen atom in other reactions. In the CS calculations, the resonance peaks persist in many partial waves but cannot survive the partial-wave summations. The cross sections for the D(') + H(2)O → D(')OH + H and D(') + HOD → D(')OD + H reactions are substantially larger than those for the D(') + HOD → HOD(') + D reaction, indicating that the D(')/H exchange reactions are much more favored than the D(')/D exchange. 相似文献
17.
The reactions of ground state Y (a(2)D) with H(2)CO and CH(3)CHO were studied at a range of collision energies in crossed molecular beams. For reaction with H(2)CO, three product channels were observed: formation of YH(2) + CO, YCO + H(2), and YHCO + H. Reaction with CH(3)CHO led to three analogous product channels involving formation of HYCH(3) + CO, YCH(2)CO + H(2), and YCH(3)CO + H. The calculated CCSD(T) energetics and DFT geometries for key intermediates in both reactions, together with RRKM theory, are used to calculate a priori the branching ratios between various product channels. These calculated values are compared to those obtained experimentally. 相似文献
18.
A theoretical study was performed for the reaction of formyl cation and acetylene to give C3H+O in flames and C2H (nonclassical)+CO, both in flames and in interstellar clouds. The corresponding Potential Energy Surface (PES) was studied at the B3LYP/cc‐pVTZ level of theory, and single‐point calculations on the B3LYP geometries were carried out at the CCSD(T)/cc‐pVTZ level. Our results display a route to propynal evolving energetically under C2H (nonclassical)+CO and, consequently, accessible in interstellar clouds conditions. This route connects the most stable C3H3O+ isomer (C2‐protonated propadienone) with a species from which propynal may be produced in a dissociative electron recombination reaction. The reaction channel to produce the C3H+O evolves basically through two TSs and presents an endothermicity of 63.9 kcal/mol at 2000 K. According to our Gibbs energy profiles, the C2‐protonated propadienone is the most stable species at low–moderate temperatures and, consequently, could play a certain role in interstellar chemistry. On the contrary, in combustion chemistry conditions (2000 K) the C2H (nonclassical)+CO products are the most thermodynamically favored species. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 35–42, 2000 相似文献
19.
Reactions of protonated water clusters, H(H(2)O)(n) (+) (n=1-4) with D(2)O and their "mirror" reactions, D(D(2)O)(n) (+) (n=1-4) with H(2)O, are studied using guided-ion beam mass spectrometry. Absolute reaction cross sections are determined as a function of collision energy from thermal energy to over 10 eV. At low collision energies, we observe reactions in which H(2)O and D(2)O molecules are interchanged and reactions where H-D exchange has occurred. As the collision energy is increased, the H-D exchange products decrease and the water exchange products become dominant. At high collision energies, processes in which one or more water molecules are lost from the reactant ions become important, with simple collision-induced dissociation processes, i.e., those without H-D exchange, being dominant. Threshold energies of endothermic channels are measured and used to determine binding energies of the proton bound complexes, which are consistent with those determined by thermal equilibrium measurements and previous collision-induced dissociation studies. A kinetic scheme that relies only on the ratio of isomerization and dissociation rate constants successfully accounts for the kinetic energy dependence observed in the branching ratios for H-D and water exchange products in all systems. Rice-Ramsperger-Kassel-Marcus theory and ab initio calculations confirm the feasibility and establish the details of this kinetic model. 相似文献
20.
An ab initio study of ionic and ion pair displacement reactions involving allylic systems has been carried out at the RHF/6-31+G* level. The geometries and natural charges show the absence of conjugative stabilization in the ionic transition states, thus differing from traditional explanations. The high reactivity of allyl halides is explained by electrostatic polarization of the double bond. Substituent effects were also studied; in general, electron-withdrawing groups lower the barriers of the ionic S(N)2 reactions but increase the barriers of the ion pair reactions. The allylic reactions are compared with related benzylic systems. Hammett correlations give rho of opposite sign for the ionic and ion pair displacement reactions, in agreement with some experimental results. 相似文献