首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Novel isotope effects were observed in desorption kinetics and adsorption geometry of cyclohexane on Rh(111) by the use of infrared reflection absorption spectroscopy, temperature programmed desorption, photoelectron spectroscopy, and spot-profile-analysis low energy electron diffraction. The desorption energy of deuterated cyclohexane (C(6)D(12)) is lower than that of C(6)H(12). In addition, the work function change by adsorbed C(6)D(12) is smaller than that by adsorbed C(6)H(12). These results indicate that C(6)D(12) has a shallower adsorption potential than C(6)H(12) (vertical geometric isotope effect). The lateral geometric isotope effect was also observed in the two-dimensional cyclohexane superstructures as a result of the different repulsive interaction between interfacial dipoles. The observed isotope effects should be ascribed to the quantum nature of hydrogen involved in the C-H···metal interaction.  相似文献   

2.
We study the water bilayer on clean and hydrogen preadsorbed Rh(111) surfaces by means of density-functional theory with the generalized gradient approximation and the van der Waals density functional, to investigate the influence of adsorbed hydrogen on the adsorption state of water. We found that adsorbed hydrogen interacts repulsively with water through its 1b(1) and 4a(1) orbitals. The repulsion dominates at high hydrogen coverage, resulting in a hydrophobic Rh(111)-H surface.  相似文献   

3.
We present all-atom molecular dynamics simulations ofn-hexane on the basal plane of graphite at monolayer and multilayer coverages. In keeping with experimental data, we find the presence of ordered adsorbed layers both at single monolayer coverage and when the adsorbed layer coexists with excess liquid adsorbate. Using a simulation method that does not impose any particular periodicity on the adsorbed layer, we quantitatively compare our results to the results of neutron diffraction experiments and find a structural transition from a uniaxially incommensurate lattice to a fully commensurate structure on increasing the coverage from a monolayer to a multilayer. The zig-zag backbone planes of all the alkane molecules lie parallel to the graphite surface at the multilayer coverage, while a few molecules are observed to attain the perpendicular orientation at monolayer coverage. Dedicated to Professor C N R Rao on his 70th birthday  相似文献   

4.
 应用红外光谱和程序升温脱附技术研究了Rh-Mn-Li-Ti/SiO2催化剂上H2对CO吸附和脱附的影响. 结果表明,预吸附的H2主要占据线式CO的吸附位. 共吸附时H2与CO在Rh位上形成了羰基氢化物,从而导致线式物种谱带红移,且高的H2浓度有利于CO的吸附. 在323 K下, H2对预吸附的CO谱带位置和强度没有影响. 但是,随着温度的升高, H2的存在促进了弱吸附CO的脱附,并使之重新吸附; 同时, H2促进了强吸附CO的解离,增强了CO的吸附强度和催化剂的吸附能力.  相似文献   

5.
The adsorption of water on FeO(111) is investigated using temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRAS). Well-ordered 2 ML thick FeO(111) films are grown epitaxially on a Pt(111) substrate. Water adsorbs molecularly on FeO(111) and desorbs with a well resolved monolayer peak. IRAS measurements as a function of coverage are performed for water deposited at 30 and 135 K. For all coverages (0.2 ML and greater), the adsorbed water exhibits significant hydrogen bonding. Differences in IRAS spectra for water adsorbed at 30 and 135 K are subtle but suggest that water adsorbed at 135 K is well ordered. Monolayer nitrogen TPD spectra from water covered FeO(111) surfaces are used to investigate the clustering of the water as a function of deposition or annealing temperature. Temperature dependent water overlayer structures result from differences in water diffusion rates on bare FeO(111) and on water adsorbed on FeO(111). Features in the nitrogen TPD spectra allow the monolayer wetting and 2-dimensional (2D) ordering of water on FeO(111) to be followed. Voids in a partially disordered first water layer exist for water deposited below 120 K and ordered 2D islands are found when depositing water above 120 K.  相似文献   

6.
The coverage dependent formation of ordered structures in vapor deposited 2,4'-bis(terpyridine)derivatives (2,4'-BTP) on (111) oriented Ag films was investigated by STM. Following a two-dimensional (2D) disordered gas phase at lowest coverages, a sequence of at least three ordered structures is observed with increasing coverage. These include a 'parallel chain structure' (PCS), a 'quasi-quadratic network' (QQN) structure, and a 'packed windmill structure' (PWS), with ideal coverages of 0.37, 0.4, and 0.44 molecules nm(-2). At intermediate coverages between 0.37 and 0.44 molecules nm(-2), these structures coexist in larger islands. The energetics of the different phases, whose structures are mainly determined by attractive C-H[dot dot dot]N bridges, are discussed in a picture including C-H[dot dot dot]N and C-H[dot dot dot]H-C interactions and lateral variations in the substrate-adsorbate interactions.  相似文献   

7.
Adsorption and reactions of NO over the clean and CO-preadsorbed Ir(111) and Rh(111) surfaces were investigated using infrared reflection absorption spectroscopy (IRAS) and temperature programmed desorption (TPD). Two NO adsorption states, indicative of hollow and atop sites, were present on Ir(111). Only NO adsorbed on hollow sites dissociated to Na and Oa. The dissociated Na desorbed as N2 by recombination of Na and by a disproportionation reaction between atop-NO and Na. Preadsorbed CO inhibited atop-NO, whereas hollow-NO was not affected. Adsorbed CO reacted with Oa and desorbed as CO2. NO adsorbed on the fcc-hollow, atop, and hcp-hollow sites in that order over Rh(111). The hcp-NO was inhibited by preadsorbed atop-CO, and fcc-NO and atop-NO were inhibited by CO preadsorbed on each type of the sites, indicating that NO and CO competitively adsorbed on Rh(111). From the Rh(111) surface-coadsorbed NO and CO, N2 was produced by fcc-NO dissociation, and CO2 was formed by reaction of adsorbed CO with Oa from dissociated fcc-NO.  相似文献   

8.
We investigated the water (D(2)O) adsorption at 135?K on a hydrogen pre-adsorbed Rh(111) surface using temperature programmed desorption and infrared reflection absorption spectroscopy (IRAS) in ultrahigh vacuum. With increasing the hydrogen coverage, the desorption temperature of water decreases. At the saturation coverage of hydrogen, dewetting growth of water ice was observed: large three-dimensional ice grains are formed. The activation energy of water desorption from the hydrogen-saturated Rh(111) surface is estimated to be 51 kJ/mol. The initial sticking probability of water decreases from 0.46 on the clean surface to 0.35 on the hydrogen-saturated surface. In IRAS measurements, D-down species were not observed on the hydrogen saturated surface. The present experimental results clearly show that a hydrophilic Rh(111) clean surface changes into a hydrophobic surface as a result of hydrogen adsorption.  相似文献   

9.
The initial growth of a water (D2O) layer on (1 x 1)-oxygen-covered Ru(0001) has been studied in comparison with that on bare Ru(0001) by means of temperature-programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRAS). Although water molecules adsorbed on both bare and (1 x 1)-oxygen-covered Ru(0001) commonly tend to form hydrogen bonds with each other when mobility occurs upon heating, the TPD and IRAS measurements for the two surfaces exhibit distinct differences. On (1 x 1)-oxygen-covered Ru(0001), most of the D2O molecules were desorbed with a peak at 160 K, even at submonolayer coverage, as condensed water desorption. The vibration spectra of adsorbed D2O also showed broad peaks such as a condensed water phase, from the beginning of low coverage. For submonolayer coverage, in addition, we found a characteristic O-D stretching mode at around 2650 cm(-1), which is never clearly observed for D2O on bare Ru(0001). Thus, we propose a distinctive water adsorption structure on (1 x 1)-oxygen-covered Ru(0001) and discuss its influence on water layer growth in comparison with the case of D2O on bare Ru(0001).  相似文献   

10.
First-principles pseudopotential calculations, within a simple dynamically constrained scheme, have been performed to investigate the reaction of 0.25 ML coverage of SiH4 and Si2H6 with the Si(001)-(2 x 2) surface. The silane molecule (SiH4) is adsorbed on to the surface at a number of different sites (on dimer, interrow, or intrarow) with varying barrier heights. Two distinct structures, which are similar in energy, arise from the initial dissociative reaction SiH4-->SiH3(silyl) + H, where the dissociated species are adsorbed either on the same dimer components or on adjacent dimer components. Several further decays of silyl from SiH4 are presented in two separate regimes of high and low ambient hydrogen coverages. The decomposition of silyl can form two different bridging structures: an on top or an intrarow bridging structure in both of the two hydrogen coverage regimes. The disilane molecule (Si2H6) is also adsorbed upon this surface with varying energy barriers, resulting in a dissociation reaction where two SiH3 species are adsorbed on one dimer or in an adjacent dimer configuration. Plausible energy reaction paths for the above models are presented. The stability of the SiH2 species is also discussed.  相似文献   

11.
γ-Mo2N催化剂上H2及NO吸附性质的TPD-MS研究   总被引:2,自引:0,他引:2  
采用TPD-MS方法研究了H2及NO在γ-Mo2N上的吸附状况.单独的H2-TPD结果表明,当H2在673K吸附时,在443K、573K及723K得到了三个H2脱附峰,表明γ-Mo2N上有三种不同能量的H2吸附位.NO-TPD结果表明,NO吸附后亦有三个脱附峰(383K、493K、543K),对应着γ-Mo2N上三种不同能量的NO吸附位:低、中、高能吸附位.NO既可以以解离状态,又可以以一种NO三聚态(dimerordinitrosyl)的形式吸附在γ-Mo2N上,这些吸附物种在脱附过程中产生大量的N2及少量的N2O.对比NO吸附在不同处理条件的γ-Mo2N上的TPD结果可知,NO是吸附在γ-Mo2N上的MO的配位不饱和中心上,这些吸附中心既可通过还原催化剂,又可通过在773K抽空钝化态的γ-Mo2N而产生,H2和NO共吸附的结果表明,预吸附H2再吸附NO后,H2和NO的脱附量均大大减少,且只有两个脱附峰出现.NO只在363K及493K出现两个脱附峰,表明预吸附氢占据了NO的强吸附位,且NO很难取代它,从而使NO只能吸附在能量较低的吸附位上;而H2只在523K及723K出现两个脱附峰,且伴随着H2的脱出有N2和H2O的产生,表明在γ-Mo2N上NO可能与预吸附氢形成了一种复合相MoHx(NO)y,它在脱附时分解为H2、N2及H2O.  相似文献   

12.
Low-temperature scanning tunneling microscopy has been used to characterize the various structures of submonolayer and near-monolayer coverages of benzene (C6H6) on Au[111] at 4 K. At low coverage, benzene is found to adsorb preferentially at the top of the Au monatomic steps and is weakly adsorbed on the terraces. At near-monolayer coverage, benzene was found to form several long-range commensurate overlayer structures that depend on the regions of the reconstructed Au[111] surface, namely a (radical 52 x radical 52)R13.9 degrees structure over the hcp regions and a (radical 133 x radical 133)R17.5 degrees "pinwheel" structure over the fcc regions. Time-lapse imaging revealed concerted cascade motion of the benzene molecules in the (radical 133 x radical 133)R17.5 degrees pinwheel overlayer. We demonstrate that the observed cascade motion is a result of concerted molecular motion and not independent random motion.  相似文献   

13.
Using infrared reflection absorption spectroscopy we have investigated how preadsorbed hydrogen affects the adsorption of O(2) on the Pt(111) surface at temperatures below the onset of the water formation reaction. On the fully hydrogen covered surface, Theta(H)=1, O(2) physisorbs at temperatures below 45 K, the weakly dipole active internal stretch vibration is observed at 1548 cm(-1). Unlike on the clean Pt(111) surface, this adsorption state does not act as a precursor for O(2) chemisorption. The physisorbed molecules simply desorb above 45 K and no chemisorbed O(2) state is populated directly from the gas phase in the temperature range 45-90 K. When the surface is approximately half covered, Theta(H) approximately 0.4, with preadsorbed hydrogen, O(2) chemisorbs on the clean Pt(111) surface regions in the characteristic peroxolike and superoxolike states with vibration frequencies around 700 cm(-1) and 870 cm(-1). These values correspond to dense O(2) islands which develop already at low O(2) coverages. At this hydrogen coverage, we find that the initial sticking probability of chemisorbed O(2) is drastically reduced at 90 K and the general uptake also proceeds slowly when compared with observations for the clean surface. We suggest that this is due to a change in the behavior of the physisorbed O(2) precursor.  相似文献   

14.
The adsorption of 4-picoline (4-methylpyridine) on the Cu(110) surface has been studied with time-of-flight electron stimulated desorption ion angular distribution (TOF-ESDIAD) and other methods. Using deuterium labeling in the methyl group and hydrogen labeling on the aromatic ring, it has been possible to separately monitor by TOF-ESDIAD the C-D bond directions and the C-H bond directions in the adsorbed molecule. These triangulation measurements have led to a detailed understanding of the conformation of the adsorbed molecule relative to the Cu(110) crystal lattice, allowing one to witness changes in the molecular conformation as adsorbate-adsorbate interactional effects take place for increasing coverages. At low coverages, the molecule adsorbs by the N atom at an atop Cu site with the aromatic ring parallel to the <001> azimuth and with the molecular axis inclined 33 (+/- 5) degrees along the <001> azimuth. As rows of 4-picoline molecules form long range ordered chain structures oriented along the <112> azimuth, the aromatic ring twists 29 degrees about the inclined molecular axis as a result of forces between the adsorbate molecules. The initial tilting of the molecular axis at low coverage is likely due to the interaction of the positive-outward dipole with its image in the substrate. The ring twist may result from dipoleminus signdipole forces between the adsorbate molecules in the rows formed tending to form nested parallel pyridine rings. These studies are the first to apply the TOF-ESDIAD method for the measurement of the direction of chemical bonds at more than one molecular location within an adsorbed molecule and the new method is named electron stimulated desorption-molecular triangulation (ESD-MT). The results obtained give information of importance in understanding the factors which control conformational effects during the molecular self-assembly of complex adsorbed molecules on surfaces.  相似文献   

15.
Low temperature, Grand Canonical Monte Carlo simulations were used to study the adsorption of fluid layers on cubic, hexagonal, and atomically smooth substrates to determine the effects of registry and surface compression on the system. The size of the fluid molecules was fixed to be 20% larger than the substrate molecules in order to observe the transition from an expanded to commensurate and finally to an incommensurate monolayer. For relatively weak fluid-substrate interactions, the cubic system underwent a first-order phase transition. As the strength of the fluid-substrate interactions increased, the molecules became fixed at commensurate locations and the transition from low density to commensurate packing became continuous. The strong fluid-substrate interactions lead to the development of a kink in the adsorption isotherm that showed the increased stability of the commensurate phase. This kink became more pronounced as the system temperature was decreased. The hexagonal system showed less dramatic results due to a decrease in the substrate well depth of the relative to the cubic system. The system did experience a first-order phase transition for a weak fluid-substrate interactions and the transition became much more gradual as the fluid-substrate interaction increased. The molecules became fixed to commensurate substrate locations, but the surface was not corrugated sufficiently to have a stable commensurate phase. The atomically smooth substrate showed the first-order phase transition expected of a low temperature system with no effects of registry.  相似文献   

16.
采用第一性原理的密度泛函理论研究单个氢原子和多个氢原子在Be(0001)表面吸附性质.给出了氢吸附Be(0001)薄膜表面的原子结构、吸附能、饱和度、功函数、偶极修正等特性参数.同时也讨论了相关吸附性质与氢原子覆盖度(0.06-1.33ML)的关系.计算结果表明:氢原子的吸附位置与覆盖度之间有强烈的依赖关系,覆盖度低于0.67ML时,氢原子能量上易于占据fcc或hcp的中空位置;覆盖度为0.78ML时,中空位与桥位为氢原子的最佳吸附位;覆盖度在0.89到1.00ML时,桥位是氢原子吸附能量最有利的位置;以上覆盖度中Be(0001)表面最外层铍原子的结构均没有发生明显变化.当覆盖度为1.11-1.33ML,高覆盖度下Be(0001)表面的最外层铍原子部分发生膨胀,近邻氢原子渗入到铍表面次层,氢原子易于占据在hcp和桥位.吸附结构中的氢原子比氢分子中的原子稳定.当覆盖度大1.33ML时,计算结果没有发现相对于氢分子更稳定的吸氢结构.同时从分析偶极修正和氢原子吸附垂直高度随覆盖度的变化关系判断氢覆盖度为1.33ML时,在Be(0001)表面吸附达到饱和.  相似文献   

17.
The dissociation and formation of water on the Rh(111) and Ni(111) surfaces have been studied using density functional theory with generalized gradient approximation and ultrasoft pseudopotentials. Calculations have been performed on 2x2 surface unit cells, corresponding to coverages of 0.25 ML, with spot checks on 3x3 surface unit cells (0.11 ML). On both surfaces, the authors find that water adsorbs flat on top of a surface atom, with binding energies of 0.35 and 0.25 eV, respectively, on Rh(111) and Ni(111), and is free to rotate in the surface plane. Barriers of 0.92 and 0.89 eV have to be overcome to dissociate the molecule into OH and H on the Rh(111) and Ni(111) surfaces, respectively. Further barriers of 1.03 and 0.97 eV need to be overcome to dissociate OH into O and H. The barriers for the formation of the OH molecule from isolated adsorbed O and H are found to be 1.1 and 1.3 eV, and the barriers for the formation of the water molecule from isolated adsorbed OH and H are 0.82 and 1.05 eV on the two surfaces. These barriers are found to vary very little as coverage is changed from 0.25 to 0.11 ML. The authors have also studied the dissociation of OH in the presence of coadsorbed H or O. The presence of a coadsorbed H atom only weakly affects the energy barriers, but the effect of O is significant, changing the dissociation barrier from 1.03 to 1.37 and 1.15 eV at 0.25 or 0.11 ML coverage on the Rh(111) surface. Finally, the authors have studied the dissociation of water in the presence of one O atom on Rh(111), at 0.11 ML coverage, and the authors find a barrier of 0.56 eV to dissociate the molecule into OH+OH.  相似文献   

18.
 采用一氧化碳程序升温脱附(CO-TPD)和吸附的一氧化碳加氢程序升温表面反应(TPSR)考察了Fe助剂对Rh基催化剂上CO的脱附行为及吸附CO的加氢行为的影响.CO-TPD实验表明,在Rh/SiO2催化剂上CO有三个脱附峰.在Rh-Mn-Li/SiO2中加入0.05%Fe后,高温脱附CO比Rh/SiO2催化剂上相应的CO量大.增加Fe的负载量,CO的脱附量减少.TPSR实验中,CO加氢反应的主要产物是甲烷.不同组分的催化剂上甲烷的生成温度有如下顺序:Rh/SiO2(482K)<Rh-Mn-Li/SiO2(489K)<Rh-Fe/SiO2(494K)<Rh-Mn-Li-Fe/SiO2(501K).甲烷峰的产生伴随着CO(s)高温脱附峰的消失,说明甲烷是由强吸附的CO加氢生成的.  相似文献   

19.
20.
The photochemical reaction of (C(5)Me(5))Rh(PMe(3))H(2) (1) in neat acetonitrile leads to formation of the C-H activation product, (C(5)Me(5))Rh(PMe(3))(CH(2)CN)H (2). Thermolysis of this product in acetonitrile or benzene leads to thermal rearrangement to the C-C activation product, (C(5)Me(5))Rh(PMe(3))(CH(3))(CN) (4). Similar results were observed for the reaction of 1 with benzonitrile. The photolysis of 1 in neat benzonitrile results in C-H activation at the ortho, meta, and para positions. Thermolysis of the mixture in neat benzonitrile results in clean conversion to the C-C activation product, (C(5)Me(5))Rh(PMe(3))(C(6)H(5))(CN) (5). DFT calculations on the acetonitrile system show the barrier to C-H activation to be 4.3 kcal mol(-1) lower than the barrier to C-C activation. A high-energy intermediate was also located and found to connect the transition states leading to C-H and C-C activation. This intermediate has an agostic hydrogen interaction with the rhodium center. Reactions of acetonitrile and benzonitrile with the fragment [Tp'Rh(CNneopentyl)] show only C-H and no C-C activation. These reactions with rhodium are compared and contrasted to related reactions with [Ni(dippe)H](2), which show only C-CN bond cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号