首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The laser induced fluorescence excitation and dispersed fluorescence spectra of three nitrogen heterocyclic molecules 1-methyl-2(1H)pyridone (1MPY), 1-methyl-2(1H)pyridinimine (1MPI), and 3-methyl-2(1H)pyridone (3MPY) have been studied under supersonic jet cooled condition. The methyl torsional and some low frequency vibrational transitions in the fluorescence excitation spectrum were assigned for 1MPY. These new assignments modify the potential parameters to the methyl torsion reported earlier. Some striking similarities exist between the torsional and vibrational transitions in the fluorescence excitation spectra of 1MPY and 1MPI. Apart from pure torsional transitions, a progression of vibration-torsion combination bands was observed for both these molecules. The excitation spectrum of 3MPY resembles the spectrum of its parent molecule, 2-pyridone. The barrier height of the methyl torsion in the excited state of 3MPY is highest amongst all these molecules, whereas the barrier in 1MPI is higher than that of 1MPY. To get an insight into the methyl torsional barrier for these molecules, results of the ab initio calculations were compared with the experimental results. It was found that the conformation of the methyl group undergoes a 60 degrees rotation in the excited state in all these molecules with respect to their ground state conformation. This phase shift of the excited state potential is attributed to the pi*-sigma* hyperconjugation between the out-of-plane hydrogen of the methyl group and the molecular frame. It has been inferred that the change in lowest unoccupied molecular orbital energy plays the dominant role in the excited state barrier formation.  相似文献   

2.
In this paper an internal axis method Hamiltonian model has been applied to evaluate the torsional rotational molecular parameters of asymmetrically substituted methyl mercaptan (CHD2SH) using previously observed microwave transitions. The torsional potential barrier function V2 has been obtained. The pure torsional energies and matrix elements between various torsional sub-levels up to the fourth excited torsional state in the ground vibrational state have been determined. The matrix elements and the torsional energies will be of great value to researchers seeking the spectrum of this molecule.  相似文献   

3.
We report on our ongoing efforts in obtaining the IR-spectra of the linear carbon cluster molecules Cn with n=8-13. So far C8, C9, C10, and C13 have been recorded at Cologne. With the exception of C8 all assignments have been secured. For C8 a tentative assignment could be derived with the bandcenter of the sigmau antisymmetric stretching mode located at nu0=2067.9779 cm(-1) and a preliminary rotational constant in the vibrational ground state of B"=0.02068 cm(-1). The measured signal to noise ratio of the ro-vibrational band is fairly weak and thus the lower J ro-vibrational transitions can not be assigned with certainty. As a consequence the band center remains uncertain by 4 J or 0.17 cm(-1). For a more reliable assignment the sensitivity of the system has to be increased by at least one order of magnitude. The envisaged sensitivity increase of our experiment will be discussed along with the intention to perform terahertz observations of the low energetic bending ro-vibrational spectra. These sub-mm wave measurements will be carried out simultaneously with the IR measurements.  相似文献   

4.
The laser induced fluorescence excitation and single vibronic excitation dispersed fluorescence spectra have been studied for supersonic jet cooled 1-methyl-2(1h)-pyridone. The methyl torsional bands and some low frequency vibrational transitions were assigned for both ground and excited states. The torsional parameters V(3)=244 cm(-1) and V(6)=15 cm(-1) for the ground state and V(3)=164 cm(-1) and V(6)=40 cm(-1) for the excited state were obtained. To get the insight into the methyl torsional barrier, ab initio calculations were performed and compared with the experimental results. Origin of potential barrier was traced by partitioning the barrier energy into changes in bond-antibond interaction, structural, and steric energies accompanying methyl rotation using natural bond orbital analysis. The role of local interactions in ascertaining the barrier potential reveals that its nature cannot be understood without considering the molecular flexing. The hyperconjugation between CHsigma(*) and ring pi(*) observed in lowest unoccupied molecular orbital (LUMO) stabilizes the methyl group conformer that undergoes a 60 degrees rotation in the excited state with respect to that of the ground state, and it is the change in LUMO that plays important role in the excited state barrier formation.  相似文献   

5.
The ground state rotational spectrum of BF2OH was measured under high resolution by microwave Fourier transform spectroscopy (FTMW), and the small torsional splitting could be resolved for several lines. This splitting was analyzed using a phenomenological model previously developed for HNO3 [Coudert and Perrin, J. Mol. Spectrosc. 1995, 172, 352] and with the help of the geometries of the stationary points calculated ab initio. The torsional splitting was also calculated using the results of the calculations for the ground vibrational state, for the excited OH torsional states 91 and 92, and for the excited BOH bending state 41, and a satisfactory agreement with available experimental data was found.  相似文献   

6.
This work reports infrared and electronic absorption spectra of trans and gauche conformers of neutral ethyl formate, trans and cis conformers of neutral methyl formate, their ions in the gas phase, and neutral ethyl and methyl formate in astrophysical H(2)O ice. The second-order M?ller-Plesset perturbation (MP2) method with TZVP basis set has been used to obtain ground-state geometries. An influence of ice on vibrational frequencies of neutral ethyl and methyl formate was obtained using integral equation formalism polarizable continnum model (IEFPCM). Significant shift in vibrational frequencies for neutral methyl and ethyl formate when studied in H(2)O ice and upon ionization is observed. Rotational and distortion constants for neutral ethyl and methyl formate from this work are in excellent agreement with the available experimental values. Electronic absorption spectra of conformers of ethyl and methyl formate and their ions are obtained using time-dependent density functional method (TDDFT). The nature of electronic transitions is also identified. We suggested lines especially good to detect these molecules in interstellar medium. Using these lines, we can identify the conformers of ethyl and methyl formate in gas phase and H(2)O ice in interstellar medium. This comparative study should provide useful guidelines to detect conformers of ethyl and methyl formate and their ions in gas phase and neutral molecules in H(2)O ice in different astronomical environment.  相似文献   

7.
The low-lying ro-vibrational states for the ground electronic state (1A1) of HeSi2+ have been calculated using an ab initio variational solution of the nuclear Schr?dinger equation. A 96 point CCSD(T)/cc-pCVQZ potential energy surface (PES) has been calculated and a Ogilvie-Padé (3,6) potential energy function has been generated. This force field was embedded in the Eckart-Watson Hamiltonian from which the vibrational and ro-vibrational eigenfunctions and eigenenergies have been variationally calculated. A 70 point QCISD/aug-cc-pCVTZ discrete dipole moment surface (DMS) was calculated and a 5th order power series expansion (in terms of the two bond lengths and the included bond angle) has been generated. Absolute line intensities have been calculated and are presented for some of the most intense transitions between the vibrational ground state and the low-lying ro-vibrational states of this ion.  相似文献   

8.
Recent experiments have prompted a theoretical investigation of the effect of methyl rotation on the A-X electronic spectrum of the CH3O2 and CD3O2 radicals. Quantum chemistry calculations have mapped the potential for the methyl rotation. Using these results, we calculate the torsional eigenvalues for both the A and X states and simulate the A-X spectrum. We find that the simulation captures the salient features of the spectrum. These features include torsional sequence structure, whose band contours change dramatically as the lower level nears the barrier, as well as atypical torsional transitions occurring from levels near the top and above the barrier. "Experimental" barrier heights are deduced for both the X and A states of methyl peroxy by modestly scaling the calculated potential to best reproduce the observed spectra.  相似文献   

9.
The torsional spectrum of disilane was recorded for the first time under high-pressure-pathlength conditions and at a spectral resolution of 0.007 cm(-1) using a Bruker IFS-120 HR Fourier transform spectrometer. The spectrum shows six distinct Q branches. The most prominent Q branch is near 130 cm(-1) which is a blend of four components of the torsional fundamental. Of the remaining five, four were assigned to the first torsional hot band (v(4)=2<--1) and one to the second torsional hot band (v(4)=3<--2). Over 350 transitions were identified. An analysis of the torsional fundamental, the first torsional hot band, and the lower state combination differences from frequencies of the vibrational bands nu(9) and nu(9)+nu(4)-nu(4) was made to characterize the torsion-rotation Hamiltonian in the ground vibrational state. The barrier height, barrier shape, and the rotational constant about the Si-Si bond were determined to be 404.344(83) cm(-1), 2.255(65) cm(-1), and 43208(28) MHz, respectively. Comparison of simulated and the experimental spectra yielded (mu||-mu(perpendicular))/mu(perpendicular)= -4(1) for the torsional dipole moments. This ratio compares well with -3.39(6) for ethane. A comparison of molecular parameters obtained here is made with those for methyl silane and ethane.  相似文献   

10.
The vibrational dynamics of isolated water molecules dissolved in the nonpolar organic liquids 1,2-dichloroethane (C(2)H(4)Cl(2)) and d-chloroform (CDCl(3)) have been studied using an IR pump-probe experiment with approximately 2 ps time resolution. Analyzing transient, time, and spectrally resolved data in both the OH bending and the OH stretching region, the anharmonic constants of the bending overtone (v=2) and the bend-stretch combination modes were obtained. Based on this knowledge, the relaxation pathways of single water molecules were disentangled comprehensively, proving that the vibrational energy of H(2)O molecules is relaxing following the scheme OH stretch-->OH bend overtone-->OH bend-->ground state. A lifetime of 4.8+/-0.4 ps is determined for the OH bending mode of H(2)O in 1,2-dichloroethane. For H(2)O in CDCl(3) a numerical analysis based on rate equations suggests a bending overtone lifetime of tau(020)=13+/-5 ps. The work also shows that full 2-dimensional (pump-probe) spectral resolution with access to all vibrational modes of a molecule is required for the comprehensive analysis of vibrational energy relaxation in liquids.  相似文献   

11.
This work presents a structural and vibrational theoretical study of n‐propyl cyanide as a function of the nitrile and methyl torsional modes. A potential energy hypersurface is built at the MP4(SDQ)/aug‐cc‐pVTZ//MP2/aug‐cc‐pVTZ theory level. The equilibrium structure is found in a gauche conformation. Another minimum is found for the trans form. The maximum appears in a cis conformation. For the first time, the interconversion barriers between the different forms are calculated. A two‐dimensional anharmonic vibrational Hamiltonian is built for the nitrile and methyl torsional modes. We find the vibrational energy levels to organize in two stacks associated to the gauche and trans forms. Fundamental frequencies of 113.12 and 220.54 cm?1 are predicted for the nitrile and methyl torsions in the equilibrium, gauche, conformer. In addition, we find symmetry allowed transitions between the gauche and trans energy levels stacks. The lowest transition is predicted to appear at 24.49 cm?1. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

12.
In this article, we present a systematic study on mono-methylindoles to investigate the electronic origin of the threefold symmetric component (V 3) of the methyl torsional potential barrier in the ground electronic state (S 0). The structures and the torsional potential parameters of these molecules were evaluated from ab initio calculation using Hartree-Fock (HF), second order Mollar Plesset perturbation (MP2) and B3LYP density functional level of theories and Gaussian type basis set 6-31G(d, p). Natural bond orbital (NBO) analysis of these molecules were carried out using B3LYP/6-31G(d, p) level of calculation to understand the formation of the threefold V 3 term arising from the changes of various non-covalent interactions during methyl rotation. Our analysis reveals that the contributions from π orbitals play a dominant role in the barrier height determination in this class of molecules. The threefold term in the barrier arises purely from the interactions non-local to the methyl group in case when the methyl group has two single bonds vicinal to it. On the other hand, it is the local interaction that determines the potential energy barrier when the methyl group has one single bond and one double bond vicinal to it. However, in all these cases, the magnitude of the energy barrier depends on the resonance structure formation in the benzene ring frame upon rotation of the methyl group and, therefore, the energetics of the barrier cannot be understood without considering the molecular flexing during methyl rotation.  相似文献   

13.
Initial spectral results are reported from a newly constructed cavity ringdown spectrometer. The apparatus incorporates a slit-jet expansion, with or without a discharge, to produce cold sample molecules. High spectral resolution in both the near- and mid-IR is obtained by using stimulated Raman scattering of the pulsed amplified output of a cw Ti:Sa ring laser. Molecular spectra presented include the electronic near-IR transitions a (1)Delta(g)(-)<-- X (3)Sigma(g)(-) of O(2) and B (3)Pi(g)<-- A (3)Sigma(u)(+) of metastable N(2) and vibrational overtones of H(2)O (polyad 2) and the OH radical. Fundamental vibrational transitions of CH(3) (nu(3)) in the mid-IR are also observed. This apparatus has demonstrated the potential for obtaining high-resolution spectra of both reactive and non-reactive species throughout the entire IR region.  相似文献   

14.
To get the insight into the electronic structure-methyl torsion correlation in nitrogen heterocyclic molecules, a comparative study on torsion of the methyl group in 1-methyl-2(1H)pyridone (1MPY), 1-methyl-2(1H)pyridinimine (1MPI), and 3-methyl-2(1H)pyridone (3MPY) was carried out using ab initio calculations. To understand the barrier forming mechanism in the ground state and its consequence on the molecular structure, the ground state torsional potential has been investigated by partitioning the barrier energy using the natural bond orbital (NBO) theoretical framework. The NBO analysis reveals that the delocalization energy is the barrier forming term whereas the Lewis energy is always antibarrier for all these molecules. To get further insight into the effect of local electronic structure on the methyl torsional barrier, the individual bond-antibond interactions and structural energy contributions have been investigated. It was found that when the bond order difference between the vicinal bonds does not change appreciably during the course of methyl rotation, the local electronic interactions with the methyl group do not play any decisive role in barrier formation as observed in the case of 1MPY and 1MPI. In these cases, it is the skeletal relaxation during methyl rotation that plays an important role in determining the barrier. On the other hand, if the bond order change is appreciable as is the case for 3MPY, the local interactions alone suffice to describe the origin of the torsional barrier of the methyl group.  相似文献   

15.
The use of a broadband, frequency shaped femtosecond laser on translationally cold cesium molecules has recently demonstrated to be a very efficient method of cooling also the vibrational degree of freedom. A sample of cold molecules, initially distributed over several vibrational levels, has thus been transfered into a single selected vibrational level of the singlet X^1∑g ground electronic state. Our method is based on repeated optical pumping by laser light with a spectrum broad enough to excite all populated vibrational levels but limited in its frequency bandwidth with a spatial light modulator. In such a way we are able to eliminate transitions from the selected level, in which molecules accumulate. In this paper we briefly report the main experimental results and then address, in a detailed way by computer simulations, the perspectives for a "complete" cooling of the molecules, including also the rotational degree of freedom. Since the pumping process strongly depends on the relative shape of the ground and excited potential curves, ro-vibrational cooling through different excited states is theoretically compared.  相似文献   

16.
Rotationally resolved fluorescence excitation spectra of the 0(0)(0) bands of the S1<--S0 electronic transitions of 2- and 5-methylpyrimidine (2MP and 5MP, respectively) have been observed and assigned. Both spectra were found to contain two sets of rotational lines, one associated with the sigma=0 torsional level and the other associated with the sigma=+/-1 torsional level of the attached methyl group. Analyses of their structure using the appropriate torsion-rotation Hamiltonian yields the methyl group torsional barriers of V6'=1.56 and V6'=8.28 cm(-1) in 2MP and V6'=4.11 and V6'=58.88 cm(-1) in 5MP. Many of the lines in both spectra are fragmented by couplings with lower lying triplet states. Analyses of some of these perturbations yield approximate values of the intersystem crossing matrix elements, from which it is concluded that the sigma=+/-1 torsional levels of the S1 state are significantly more strongly coupled to the T1 state than the sigma=0 torsional levels.  相似文献   

17.
The Raman spectra of cis-2,3-dimethyloxirane and trans-2,3-dimethyloxirane in the vapor, liquid, and polycrystalline solid phases are reported for the region between 25 and 3100 cm?1. The IR spectra of these two compounds between 80 and 4000 cm?1 in the vapor and polycrystalline solid phases are also reported. In the IR and Raman spectra of gaseous trans-2,3-dimethyloxirane a total of eight torsional transitions have been observed. In the Raman spectrum of the cis compound in the vapor phase, four torsional transitions have been observed. From these experimental data, periodic barriers to the methyl torsional motions have been calculated to be 905 ± 7 cm?1 (2.5 kcal mol?1) for the trans molecule and 617 ±5 cm?1 (1.76 kcal mol?1) for the cis molecule. Additionally, complete vibrational assignments based on band contours, depolarization values, and group frequencies are proposed for both molecules and gas-phase thermodynamic functions have been calculated. These results are compared to the corresponding quantities for some similar molecules.  相似文献   

18.
Rotationally resolved fluorescence excitation spectra of several torsional bands in the S1 <-- S0 electronic spectra of 2-methylanisole (2MA) and 3-methylanisole (3MA) have been recorded in the collision-free environment of a molecular beam. Some of the bands can be fit with rigid rotor Hamiltonians; others exhibit perturbations produced by the coupling between the internal rotation of the methyl group and the overall rotation of the entire molecule. Analyses of these data show that 2MA and 3MA both have planar heavy-atom structures; 2MA has trans-disposed methyl and methoxy groups, whereas 3MA has both cis- and trans-disposed substituents. The preferred orientations (staggered or eclipsed) in two of the conformers and the internal rotation barriers of the methyl groups in all three conformers change when they are excited by light. Additionally, the values of the barriers opposing their motion depend on the relative positions of the substituent groups, in both electronic states. In contrast, no torsional motions of the attached methoxy groups were detected. Possible reasons for these behaviors are discussed.  相似文献   

19.
We present theoretical vibrational and absorption spectra of aminoacetonitrile, its cation, anion, cyanoprotonated, and aminoprotonated aminoacetonitrile. We used second‐order Moller–Plesset perturbation method (MP2) with TZVP basis set to obtain ground state geometries and vibrational spectra. Time dependent density functional theory method was used to obtain absorption spectra. Shifts in vibrational modes for aminoacetonitrile upon ionization and protonation are determined. The C≡N stretching mode which is the most important mode in detection of nitriles in space is more intense in aminoacetonitrile ions and its two protonated form and is less IR active for neutral aminoacetonitrile. The nature of electronic transition for these molecules is identified. All the electronic transitions for neutral aminoacetonitrile and its cation are the σ → σ* electronic transitions, whereas its anion and protonated aminoacetonitrile display the σ → σ* as well as π → π* transitions. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

20.
The high resolution Fourier transform far-infrared (FIR) spectrum of the torsion rotation band of CH3OD has been analyzed for the highly excited torsion states (n > or = 2) in the vibrational ground state. The spectrum shows splitting of the lines due to strong torsional-rotational-vibrational interactions in the molecule. Assignments were possible for rotational sub-bands in the torsional state as high as n = 4 and for K values up to 8 and J values of up to approximately 30 in most cases, for all the symmetry species. For the third excited torsional state n = 3 assignments were possible to K = 10. The data were analyzed with the help of the energy expansion model, which has been proven very successful in methanol. The state dependent expansion parameters are presented. These molecular parameters were able to reproduce the observed wavenumbers almost to within experimental accuracy of 0.0002 cm(-1) for clean unblended lines. These expansion coefficients should prove valuable in the calculation of precise energy values for excited torsional states up to n = 4, which is way above the torsional barrier. The detailed high-resolution spectral atlas of CH3OD has been presented in the range 200-350 cm(-1). This atlas is an extension of our earlier atlas in the range 20-205 cm(-1). The availability of this atlas in the journal will be very valuable for spectroscopists and astrophysicists seeking information in the infrared (IR) region in the laboratory and in outer space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号