首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用根据连续介质理论和热力学约束平衡态方法得到的非平衡态溶剂化理论,在单球孔穴点偶极模型近似下推导得出了吸收光谱移动的解析公式.用含时密度泛函方法,在B3LYP/cc-pVDZ水平下研究了对硝基苯胺在水溶液中最低的π→π^*跃迁的吸收光谱,利用新的溶剂化光谱移动公式,得到了与实验值-0.98eV符合很好的光谱移动值一0.99eV.  相似文献   

2.
3.
A minimal quantum mechanical model for efficient molecular capture of photon energy is presented. The model is constructed from a bright electronic state which is accessed by a photoinduced transition from the ground state and an acceptor excited state which stores the photoenergy. The model permits rational design of the bright and acceptor electronic states to improve the capture of solar energy. The main design factors are analyzed through examples.  相似文献   

4.
This paper begins with describing the excitation mechanisms in surface photochemistry and nuclear dynamics of adsorbate induced by electronic excitation. An illustrative example is Cs adsorbate on a Cu(111) surface. This adsorption system shows drastic changes in the electronic structure with coverage; this allows us to examine different types of electronic excitations that stimulate nuclear motions of Cs. Remarks are made on challenges in photoinduced processes at well-defined surfaces: direct observations of adsorbate-substrate vibrational modes and photoinduced reactions between adsorbates. Then, the paper addresses some issues in more complex systems: metal-liquid interfaces and powdered photocatalysts of metal oxides. Photochemistry and photoinduced nuclear dynamics at metal-liquid interfaces have not been well explored. Studies on this subject may make it possible to bridge the gap between surface photochemistry and electrochemistry. Photocatalysis with powdered catalysts has been extensively studied and is still an active area, but our understanding of the mechanism of photocatalysis is far from satisfactory. Although complicated, the highly integrated systems provide an opportunity to extend our knowledge of surface photochemistry.  相似文献   

5.
Ultrafast photoinduced dynamics of electronic excitation in molecular dimers is drastically affected by the dynamic reorganization of inter- and intra- molecular nuclear configuration modeled by a quantized nuclear degree of freedom. The dynamics of the electronic population and nuclear coherence is analyzed by solving the chain of coupled differential equations for population inversion, electron-vibrational correlation, etc. Intriguing results are obtained in the approximation of a small change of the nuclear equilibrium upon photoexcitation. In the limiting case of resonance between the electronic energy gap and the frequency of the nuclear mode these results are justified by comparison to the exactly solvable Jaynes-Cummings model. It is found that the photoinduced processes in the model dimer are arranged according to their time scales: (i) Fast scale of nuclear motion, (ii) intermediate scale of dynamical redistribution of electronic population between excited states as well as growth and dynamics of electron-nuclear correlation, (iii) slow scale of electronic population approach to the quasi-equilibrium distribution, decay of electron-nuclear correlation, and decrease of the amplitude of mean coordinate oscillation. The latter processes are accompanied by a noticeable growth of the nuclear coordinate dispersion associated with the overall nuclear wave packet width. The demonstrated quantum relaxation features of the photoinduced vibronic dynamics in molecular dimers are obtained by a simple method, applicable to systems with many degrees of freedom.  相似文献   

6.
In our recent work, a new form of the electrostatic solvation energy for the nonequilibrium polarization has been derived by introducing the method of constrained equilibrium state in the framework of continuous medium theory. Up until now, the idea of the constrained equilibrium state method has not been introduced into the explicit solvent model by others; therefore this nonequilibrium energy form was further equivalently extended to the explicit solvent model in this work based on the discrete representation of the solvent permanent charges and induced dipoles. Making use of this expression in explicit solvent model, we modified the nonequilibrium module in the averaged solvent electrostatic potential/molecular dynamics program to implement numerical calculations. Subsequently, the new codes were applied to study the solvatochromic shifts of the n → π* absorption spectra for acetone and trans-formic acid in aqueous solution. The calculation results show a good agreement with the experimental observations. When our results of spectral shift are compared with those achieved directly from the continuum model, it can be seen that both the explicit solvent model and continuum model derived based on the constrained equilibrium approach can give reasonable predictions. The hydrogen bond effect was also discussed and deemed to be a dominant contribution to the spectral shift by calculating the n → π* absorption spectra of acetone-water complexes.  相似文献   

7.
8.
According to our recent studies on the nonequilibrium solvation, the solvent reorganization energy is found to be the cost of maintaining the residual polarization P', which equilibrates with the extra electric field E(ex). On the basis of this solvent reorganization energy and the well-established equilibrium solvation energy, a novel and reasonable expression for the spectral shift of the electronic absorption spectra is proposed in this work. Furthermore, the two lowest transitions of uracil in aqueous solution are investigated as test cases with the TDDFT/6-311++G** method. The obtained spectral shift is 0.48 eV for n → π* transition and -0.14 eV for π → π* transition, agreeing well with available experimental results. The contributions to the shift are discussed and the electrostatic plus polarization components are found to be crucial for the electronic absorption spectra of uracil in aqueous solution.  相似文献   

9.
We have developed a theoretical model of photoinduced reactions on metal surfaces initiated by the substrate/indirect excitation mechanism using the nonequilibrium Green's function approach. We focus on electron transfer, which consists of (1) electron-hole pair creation, (2) transport of created hot electrons, and (3) tunneling of hot electrons to form an anion resonance. We assume that steps (1), (2), and (3) are separable. By this assumption, the electron dynamics might be restated as a tunneling problem of an open system. Combining the Keldysh time-independent formalism with the simple transport theory introduced by Berglund and Spicer, we present a practical scheme for first-principle calculation of the reaction probability as a function of incident photon energy. The method is illustrated by application to the photoinduced desorption/dissociation of O2 on a Ag(110) surface by adopting density functional theory.  相似文献   

10.
No matter photoinduced organic radicals have been reported frequently, they are usually non-luminescent at ambient conditions. The internal mechanism on stability and electronic transitions of photoinduced radicals, is thus crucial for the development of relevant materials. Herein, a series of photoinduced radical emission systems were developed conveniently through doping benzoic acids into the hydrogen donor polyvinyl alcohol (PVA) matrix. Visual photoinduced radical emission and photochromism could be observed on Ph-3COOH @PVA film with the formation of cyclohexadienyl-type structure. For the first time, radical afterglow appeared with energy transfer from triplet state. The appropriate introduction of carboxylic groups to three nonadjacent carbon atoms on the benzene ring was the best for decreasing spin population and promoting electronic transitions of the radical. This study largely expands the radical emission property from both internal mechanism and practical application.  相似文献   

11.
Based on the super-fermion representation of quantum kinetic equations we develop nonequilibrium, post-Hartree-Fock many-body perturbation theory for the current through a region of interacting electrons. We apply the theory to out of equilibrium Anderson model and discuss practical implementation of the approach. Our calculations show that nonequilibrium electronic correlations may produce significant quantitative and qualitative corrections to mean-field electronic transport properties.  相似文献   

12.
The phase space probability density for steady heat flow is given. This generalizes the Boltzmann distribution to a nonequilibrium system. The expression includes the nonequilibrium partition function, which is a generating function for statistical averages and which can be related to a nonequilibrium free energy. The probability density is shown to give the Green-Kubo formula in the linear regime. A Monte Carlo algorithm is developed based upon a Metropolis sampling of the probability distribution using an umbrella weight. The nonequilibrium simulation scheme is shown to be much more efficient for the thermal conductivity of a Lennard-Jones fluid than the Green-Kubo equilibrium fluctuation method. The theory for heat flow is generalized to give the generic nonequilibrium probability densities for hydrodynamic transport, for time-dependent mechanical work, and for nonequilibrium quantum statistical mechanics.  相似文献   

13.
We propose a scheme for calculation of linear optical response of current-carrying molecular junctions for the case when electronic tunneling through the junction is much faster than characteristic time of external laser field. We discuss relationships between nonequilibrium Green's function (NEGF) and time-dependent density functional theory (TDDFT) approaches and derive expressions for optical response and linear polarizability within NEGF-TDDFT scheme. Corresponding results for isolated molecule, derived within TDDFT approach previously, are reproduced when coupling to contacts is neglected.  相似文献   

14.
The electronic transport properties of a single quintuple bond [PhCrCrPh] molecule sandwiched between two Au(111) surfaces with the trans-bent and linear configurations are studied by a fully self-consistent nonequilibrium Green's function method combined with density functional theory. The calculated transmission spectra of two chemical isomers are remarkably distinctive. Theoretical results suggest that the current through the trans-bent configuration is significantly larger than the corresponding linear one. The predicted on-off ratio of currents ranging from around 50 to 200 in the applied bias window [-1.5 V, 1.5 V] suggests that multiple bond compounds have attractive potential in molecular switch technology.  相似文献   

15.
While preparing the first structurally rigid zinc phthalocyanine-benzoquinone (ZnPc-BQ) dyad as a model for photoinduced charge separation mimicking natural photosynthesis, a convenient method is developed for in situ generation of a benzoquinone chromophore in the dyad using an iso-butyryl mask. The dyad has no rotamers and possesses a fixed distance between ZnPc and BQ moieties (center-to-center and edge-to-edge distances are 9.40 and 2.14 A, respectively). The dyad displays unusual electronic perturbation in the ground state, resulting from the interactions between Pc and BQ, and exhibits photoinduced electron transfer with a lifetime of 40 ps of the charged separated states. The steady-state fluorescence and electrochemical behavior of the dyad are evaluated. This study opens a route to subsequent dyads, triads, and complex architectures of electron donor-acceptor arrays with rigid structures and long charge separation states.  相似文献   

16.
The results of our earlier work [C. Brooksby, O. V. Prezhdo, and P. J. Reid, J. Chem. Phys. 119, 9111 (2003)] rationalizing the surprisingly weak solvent dependence of the dynamics following photoexcitation of chlorine dioxide in water, chloroform, and cyclohexane are thoroughly tested. Comparisons are made between equilibrium and nonequilibrium solvent response, equilibrium response in the ground and excited electronic states, as well as the cumulant and direct evaluation of the optical response function. In general, the linear response and cumulant approximations are found to hold, although minor deviations are found with all solvents. The ground state, linear response, and cumulant data show best agreement with experiment, most likely due to the better tested ground-state force field and the robust behavior of the linear response and cumulant approximations. The main conclusion of our earlier work explaining the weak solvent dependence by the domination of the van der Waals interaction component remains intact within the more advanced treatments. However, the molecular origin of this surprising experimental observation is different in water and chloroform compared to cyclohexane.  相似文献   

17.
We present a formal comparison between the two different approaches to the calculation of electronic excitation energies of molecules in solution within the continuum solvation model framework, taking also into account nonequilibrium effects. These two approaches, one based on the explicit evaluation of the excited state wave function of the solute and the other based on the linear response theory, are here proven to give formally different expressions for the excitation energies even when exact eigenstates are considered. Calculations performed for some illustrative examples show that this formal difference has sensible effects on absolute solvatochromic shifts (i.e., with respect to gas phase) while it has small effects on relative (i.e., nonpolar to polar solvent) solvatochromic shifts.  相似文献   

18.
The dependence of the ultrafast photoinduced electron transfer dynamics in donor-acceptor complexes on the excitation pulse carrier frequency (spectral effect) has been investigated in the framework of a model involving three electronic state. The spectral effect has been shown to strongly depend on the angle theta between the reaction coordinate directions corresponding to optical and charge transfer transitions. Describing the solvent as a linear homogenous polar medium and accounting for Coulombic interaction of the transferred charge with the medium polarization fluctuations, the angle theta has been found out to be typically in the area 40 degrees -85 degrees. Exactly in this area of theta the spectral effect is predicted to be most pronounced.  相似文献   

19.
20.
The photochemistry and photophysics of a two-glycine minimal model is studied at the CASPT2//CASSCF level of theory. Different photoinduced processes are discussed, on the basis of the calculated minimum energy paths and the characterization of the electronic state crossings. Two main processes could provide UV-photostability to the hydrogen-bonded peptide system: (i) forward-backward photoinduced electron/proton transfer involving the H in the hydrogen bond, (ii) singlet-singlet energy transfer between two amino acids, providing ultrafast population of the low-energy n,π* state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号