首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binding of metals in typical bath peat samples (“Großes Gifhorner Moor”, Sassenburg/North Germany) and their aqueous extracts was characterized by means of a multi-method approach. For that purpose a sequential extraction procedure based on peat-filled chromatography columns was developed. Water-soluble metal and DOM (dissolved organic matter) fractions were subdivided by use of a stepwise increased pH gradient (pH 3.8–5), finally by the chelator EDTA and 0.1 mol L–1 hydrochloric acid. Metal fractions very strongly bound to peat were assessed by an aqua regia extraction. Metal determinations required were performed by atomic spectrometry methods (AAS, ICP–OES, and TXRF). The metal and DOM concentrations in the peat extracts varied significantly, depending on the natural variety of the peat matter under study (e.g., Al: 25–674, Cd: 0.05–0.2, Cu: 5– 15.4, Fe: 77–1785, Mn: 21–505, Ni: 2–33, Pb: < 1, Zn: 9– 715 (μg L–1); Na: 8–45, K: 1.3–14.9, Ca: 2–51, Mg: 1.1– 7.9 (mg L–1); 26–73 mg L–1 DOC). An increase of the pH increased the DOC (dissolved organic carbon) of the peat extracts, but hardly the concentration of heavy metals. The latter could only be re-mobilized by EDTA and dilute hydrochloric acid. Additional investigations of the peat extracts using tangential-flow ultrafiltration revealed that the heavy metals extracted at pH < 4 were predominantly dissociated. At higher pH (pH > 4.5) they were preferentially bound to macromolecular DOM. Moreover, using multistage ultrafiltration the size distribution of the DOM and their metal species was assessed.  相似文献   

2.
Rosa AH  Rocha JC  Burba P 《Talanta》2002,58(5):969-978
The binding and availability of metals (Al, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Zn) in therapeutically applied peat (Grosses Gifhorner Moor, Sassenburg/North Germany) was characterized by means of a versatile extraction approach. Aqueous extracts of peat were obtained by a standardized batch equilibrium procedure using high-purity water (pH 4.5 and 5.0), 0.01 mol l(-1) calcium chloride solution, 0.01 mol l(-1) ethylenediaminetetraacetic acid (EDTA) and 0.01 mol l(-1) diethylenetriamine pentaacetic acid (DTPA) solution as metal extractants. In addition, the availability of peat-bound metal species was kinetically studied by collecting aliquots of extracts after different periods of extraction time (5, 10, 15, 30, 60 and 120 min). Metal determinations were performed by atomic spectrometry methods (AAS, ICP-OES) and dissolved organic matter (DOM) was characterized by UV/Vis measurements at 254 and 436 nm, respectively. Of the extractants studied Ca, Mg and Mn were the most available metals, in contrast to peat-bound Fe and Al. The relative standard deviation s(r) of the developed extraction procedures was mostly in the range of 4 to 20%, depending on the metal and its concentration in peat. A pH increase favored the extraction of metals and DOM from peat revealing complex extraction kinetics. Moreover, a competitive exchange between peat-bound metal species and added Cu(II) ions showed that >100 mg of Cu(II) per 50 g wet peat was necessary to exchange the maximum of bound metals (e.g. 21.8% of Al, 3.9% of Fe, 79.0% of Mn, 81.9% of Sr, related to their total content).  相似文献   

3.
Humic-rich hydrocolloids and their metal loading in selected German bog-waters have been characterized by a novel on-site approach. By use of an on-line multistage ultrafiltration (MST-UF) unit equipped with conventional polyethersulfone (PES)-based flat membranes (nominal cut-off 0.45, 0.22, and 0.1 microm, or 100, 50, 10, 5, 3 kDa) the hydrocolloids could be fractionated on-site in both sub-particulate and macromolecular size ranges. Characterization (dissolved organic carbon (DOC), metals) of the colloid fractions obtained this way was performed off-site by use of conventional instrumental methods (carbon analyzer, AAS, ICP-OES, and TXRF (total reflection X-ray fluorescence)). Major DOC fractions of the hydrocolloids studied were found to be in the size range <5 kDa. The assessed metals (Al, Cu, Fe, Mn, Pb, and Zn) were, however, predominantly enriched in the macromolecular and sub-particulate range, depending on the metal and the sample, respectively. In addition, metal species bound to these hydrocolloids were kinetically characterized on-site by use of competitive ligand (EDTA (ethylenediaminetetraacetate)) and metal (Cu(II)) exchange; the EDTA complexes formed and the metal ions exchanged were separated by means of a small time-controlled tangential-flow UF unit (cut-off 1 kDa). Bound metal fractions, in particular Al and Fe, reacted only slowly (500 to 1000 min) with EDTA; the conditional availability was 60-99%, depending on the hydrocolloid. In contrast, the Cu(II) exchange of colloid-bound metal species approached equilibrium within 5-10 min, with characteristic exchange constants, Kex, of the order of 0.01 to 90 for the metals (Fe相似文献   

4.
Transformations of metal species (particularly Al, Ca, Fe, Mg, Mn, Zn) in ageing humic hydrocolloids were studied, applying a competitive ligand and metal exchange approach. For this purpose, metal-containing hydrocolloids, freshly collected from humic-rich German bog lake waters (Hohlohsee (HO), Black Forest; Venner Moor (VM), Muensterland; Arnsberger Wald (AW), Northrhine-Westfalia) and conventionally pre-filtered through 0.45 m membranes, were subjected on-site to an exchange with EDTA and Cu(II) ions, respectively, as a function of time. EDTA complexes gradually formed, metal fractions exchanged by Cu(II) (as well as free Cu(II) concentrations) were operationally discriminated by means of a small time-controlled tangential-flow ultrafiltration unit (nominal cut-off: 1 kDa). Metal and DOM (dissolved organic matter) fractions obtained this way were determined off-site using instrumental methods (AAS, ICP-OES, carbon analyzer). After weeks of storage, the collected hydrocolloids were studied again by this approach. The EDTA availability of colloid-bound metals (particularly Al and Fe) exhibited different ageing trends, dependent on the sample (VM: decrease of Fe availability (98–76%), HO: increase of Fe availability (76–82%)). In contrast, the Cu(II) exchange equilibria of colloid-bound metals revealed merely low availability of Al (16–38%) and Fe (5–11%) towards Cu(II) ions, also dependent on ageing effects. In particular, the conditional copper exchange constants Kex obtained from the exchange between Cu(II) ions and available metal species (such as Ca, Mg, Mn, Zn) exhibited a strong decrease (by a factor of 2–100) during sample storage, indicating considerable non-equilibria complexation of these metal ions in the original bogwaters studied on-site.  相似文献   

5.
This study examines the effects of natural solar radiation on the metal-binding capacity of dissolved organic matter (DOM). Newington Bog water (35.5 mg L−1 dissolved organic carbon [DOC]) was irradiated for 20 days under UV-B lamps in the laboratory and under natural solar radiation. In the presence of irradiated DOM, IC50 (contaminant concentration required to reduce algal growth by 50%) was significantly decreased with UV-B treatment for four metals: Pb, 64%; Cu, 63%; Ni, 35% and Cd, 40%. Solar radiation also significantly decreased IC50 of Pb (58%) and Cu (49%), DOC concentration (11%), DOM fluorescence (DOMFL, 33%) and DOC-specific UV absorbance. Further experiments on Raisin River water (20.7 mg DOC L−1) exposed to 20 days of artificial UVA and UV-B radiation produced significant decreases in IC50 for Cu (48%) with UV-A and for Pb (43%) with UV-B. DOC concentration was decreased 20% by UV-B and 24% by UV-A. DOMFL decreased 51.5% in the first 5 days of UV-A exposure, an effect that was not observed with the UV-B treatment. The UV-A treatment decreased UV absorbance more at longer wavelengths and over a broader wavelength band than did the UV-B treatment. Change in toxicity with UV irradiation was inconsistent among the metals tested in this study, indicating that some organic metal-binding ligands were more quickly removed or altered than others. The DOM remaining after irradiation appears to be qualitatively different from the unirradiated DOM. The much greater irradiance of UV-A makes its contribution to the removal and/or alteration of DOM at least as important as the influence of higher energy UV-B.  相似文献   

6.
Human hair shavings were characterized as a sorbent for trace metals. At pH 7.0 metal sorption follows the order Pb(II)>Cd(II)>Cr(VI)>Fe(III)>Cu(II)>Ni(II)>Mn(VI). Metal recovery is quantitative for Pb and Cd after 30 min of equilibration. Recovery of other metals is less quantitative and varies with pH. For example, while Cu is best recovered at pH 5, Ni and Mn are sorbed optimally in the basic pH region. Sorbed metals can be washed off the sorbent with 0.5 mol L(-1) strong mineral acids or more completely with 0.1 mol L(-1) ethylenediaminetetraacetic acid (EDTA). Typical sorption isotherms were obtained for Cd and Pb with sorption capacities of 39 and 26 micromol g(-1), respectively.Hair sorbent was used for 40-fold pre-concentration of Cd and Pb from treated wastewater samples followed by flame atomic absorption spectroscopic (FAAS) determination. Comparison of the data obtained for lead and cadmium by the proposed pre-concentration method with that by graphite furnace atomic absorption spectroscopy (GFAAS) showed 79 to 86% recovery and comparable analytical precision. Common cations and anions at the levels normally present in natural water do not interfere in the proposed pre-concentration-FAAS method.  相似文献   

7.
Hayase K  Shitashima K  Tsubota H 《Talanta》1986,33(9):754-756
Chloroform extraction of trace metals (Ni, Cu, Mo, Mn, Cd and Pb) in estuarine sea-water was studied at pH 8 and pH 3, on the basis that the metals would be associated with dissolved organic matter (DOM), which has recently been characterized by reversed-phase liquid chromatography. Ni, Cu, Mo and Mn were extracted more at pH 8 than at pH 3. Cd and Pb were not associated with the DOM at either pH 8 or 3. The percentage of the total dissolved trace metals in sea-water associated with DOM varied from 0 to 14%. The metals extracted into chloroform at pH 8 were assumed to be associated with neutral or weakly basic DOM while at pH 3 they could be associated with either the neutral (or weakly basic) DOM or two types of acidic DOM.  相似文献   

8.
The results of long-term investigations of the concentrations of dissolved forms of some heavy metals (Mn, Cu, Zn, Pb, Cr, Cd) and their species in the water of the Dnieper reservoirs and the Dnieper-Bug estuary are considered. Chemiluminescent methods, anodic stripping voltammetry, membrane filtration, ion-exchange, and gel-permeation chromatography were used for study of the speciation of the metals. It has been found that binding of heavy metals into complexes with dissolved organic matter (DOM) is the dominant factor of their stabilization in solution. The molecular weight distribution of organic metal complexes and their chemical nature, as well as the potential complexing ability of DOM were investigated. Humic substances, particularly fulvic acids, play a major role in the complexation. These ligands bind from 45 to 80% of metals in the form of organic complexes. Metal complex compounds of relatively low molecular weight (<5 kDa) predominated in the organic complexes.  相似文献   

9.
Aerobic and anaerobic incubation experiments on a wetland soil samples were used to assess the respective roles of organic matter (OM) release, Fe-oxyhydroxides reduction and redox/speciation changes on trace metal mobility during soil reduction. Significant amounts of Cu, Cr, Co, Ni, Pb, U, Th and Rare Earth Elements (REE) were released during anaerobic incubation, and were accompanied by strong Fe(II) and dissolved organic matter (DOM) release. Aerobic incubation at pH 7 also resulted in significant trace metal and DOM release, suggesting that Fe-oxyhydroxide reduction is not the sole mechanism controlling trace metal mobility during soil reduction. Using these results and redox/speciation modeling, four types of trace metal behavior were identified: (i) metals bound to organic matter (OM) and released by DOM release (REE); (ii) metals bound to both OM and Fe-oxyhydroxides, and released by the combined effect of DOM release and Fe(III) reduction (Pb and Ni); (iii) metals bound solely to soil Fe-oxyhydroxides and released by its reductive dissolution (Co); and (iv) metals for which release mechanisms are unclear because their behavior upon reduction is affected by changes in redox state and/or solution speciation (Cu, Cr, U and Th). Even though the process of soil Fe-oxyhydroxide reduction is important in controlling metal mobility in wetland soils, the present study showed that the dominant mechanism for this process is OM release. Thus, OM should be systematically monitored in experimental studies dedicated to understand trace metal mobility in wetland soils. Due to the fact that the process of OM release is mainly controlled by pH variations, the pH is a more crucial parameter than Eh for metal mobility in wetland soils.  相似文献   

10.
Biogenic (e.g. phytochelatins, porphyrins, DOM) as well as anthropogenic (e.g. NTA, EDTA, phosphonates) chelators affect the mobility and cycling of heavy metals in environmental waters. Since such chelators can form strongly bound anionic heavy metal complexes that are stable and highly mobile, anion-exchange chromatography coupled to ICP-MS was investigated. A narrow bore HPLC system was connected to a micro concentric nebuliser for in-line sample introduction. A new chromatographic procedure based on a synthetic hydrophilic quaternary ammonium anion exchanger in combination with nitrate as a strong eluent anion, and gradient elution, provided high separation selectivity and a large analytical window. Low detection limits (nmol L(-1)) were achieved by on-column matrix removal and sample preconcentration. This allowed the method to be successfully applied to different environmental research areas. In ecotoxicological studies of heavy metal effects on algae low concentrations of metal EDTA complexes were determined in nutrient solutions without interference from high (buffer) salt concentrations. In groundwater, infiltrated by a polluted river, mobile metal EDTA species were observed. In river water of different pollution levels beside CuEDTA other anionic Cu-complexes were found in nmol L(-1) concentrations.  相似文献   

11.
Laboratory batch studies were conducted to evaluate the binding capacity and the mobility of metal species bound to typical humus peat matter. The identification of phase composition of mineral fractions and functional groups in the organic matter was assessed. The results showed generally high, but different retention capacity and binding strength, suggesting distinct diversity in binding mechanisms, phases and chemical nature of binding sites, depending on the metal species and their input concentrations. In general, the binding capacity of peat for the metal ions studied follows the order: Cr(3+) > Cu(2+) > Zn(2+) > Cd(2+) and results in the decrease of pH in the same order, due to displacement of H(3)O(+) from the peat by metal ions. The highest metal enrichment occurs in fractions F1(EXC), F2(CARB), F4(MRO) and F5(OM) of different binding strength adequate to exchangeable, carbonatic, moderately reducible amorphous Fe-oxide and organic/ sulphidic fractions in soils and sediments. In relation to species distribution in peats, the prevailing part of Cr(3+) is strongly bound in oxidizable organic substrate, while Cu(2+) is highly enriched in the moderately reducible F4(MRO) and the most labile F2(EXC) fractions. Cd(2+) and Zn(2+) are predominantly bound in the labile F1(EXC) and F2(CARB) fractions. Diversity of the predominant binding phases for the studied metals suggests rather weak competition for binding sites between chromium and copper ions; the strongest competition between the sorbed metal ions is anticipated for F1(EXC) and F2(CARB) fractions.  相似文献   

12.
A simplified and fast sample pretreatment method based on ultrasound-assisted solubilization of metals from plant tissue with ethylenediaminetetraacetic acid in alkaline medium is described. Powdered unknown and certified plant samples (particle size < 50 microns) were slurried in the solubilization medium and subjected to high intensity ultrasonication by a probe ultrasonic processor (20 kHz, 100 W). Metal solubilization can be accomplished within 3 min using a 30% vibrational amplitude and 0.1 M EDTA at pH 10, the supernatant obtained upon centrifugation being used for analysis. The method is applied to several food plants with unknown metal contents and certified plant samples such as CRM GBW07605 tea leaves, BCR CRM 61 aquatic moss and BCR CRM 482 lichen, with good trueness and precision. Intensive treatments with concentrated acids involving total matrix decomposition can be avoided. Metal determination (Ca, Cd, Mg, Mn, Pb and Zn) in the alkaline extracts was carried out by flame and electrothermal atomic absorption spectrometry.  相似文献   

13.
A simplified and fast sample pretreatment method based on ultrasound-assisted solubilization of metals from plant tissue with ethylenediaminetetraacetic acid in alkaline medium is described. Powdered unknown and certified plant samples (particle size < 50 μm) were slurried in the solubilization medium and subjected to high intensity ultrasonication by a probe ultrasonic processor (20 kHz, 100 W). Metal solubilization can be accomplished within 3 min using a 30% vibrational amplitude and 0.1 M EDTA at pH 10, the supernatant obtained upon centrifugation being used for analysis. The method is applied to several food plants with unknown metal contents and certified plant samples such as CRM GBW07605 tea leaves, BCR CRM 61 aquatic moss and BCR CRM 482 lichen, with good trueness and precision. Intensive treatments with concentrated acids involving total matrix decomposition can be avoided. Metal determination (Ca, Cd, Mg, Mn, Pb and Zn) in the alkaline extracts was carried out by flame and electrothermal atomic absorption spectrometry.  相似文献   

14.
Size exclusion chromatography (SEC) followed by anion exchange chromatography (AEC) hyphenated with inductively coupled plasma-mass spectrometry (ICP-MS) was applied for fractionating metals bound to marine dissolved organic matter (DOM). Surface seawater samples (100 L) were subjected to tangential flow ultrafiltration (10,000 Da cut off) for isolating and pre-concentrating dissolved large molecules. The isolated fraction (retentate) consisted of 1 L, which was further freeze-dried and re-dissolved to 250 mL with ultrapure water. After HI Trap desalting of the re-dissolved retentate, SEC with UV detection showed marine DOM ranging from 6.5 kDa (lower than the permeable volume of the SEC column) to 16 kDa. A further characterization of this fraction by AEC with UV detection revealed the existence of four groups of macromolecules exhibiting retention times of 2.3, 2.8, 4.5 and 14.0 min. AEC hyphenated with ICP-MS showed the presence of strontium and zinc in the first AE fraction isolated from the SEC fraction; while manganese was found to be bound to the second AE fraction. Cobalt was found to be bound to molecules comprising the third AE fraction.  相似文献   

15.
Laboratory batch studies were conducted to evaluate the binding capacity and the mobility of metal species bound to typical humus peat matter. The identification of phase composition of mineral fractions and functional groups in the organic matter was assessed. The results showed generally high, but different retention capacity and binding strength, suggesting distinct diversity in binding mechanisms, phases and chemical nature of binding sites, depending on the metal species and their input concentrations. In general, the binding capacity of peat for the metal ions studied follows the order: Cr3+ > Cu2+ > Zn2+ > Cd2+ and results in the decrease of pH in the same order, due to displacement of H3O+ from the peat by metal ions. The highest metal enrichment occurs in fractions F1(EXC), F2(CARB), F4(MRO) and F5(OM) of different binding strength adequate to exchangeable, carbonatic, moderately reducible amorphous Fe-oxide and organic/ sulphidic fractions in soils and sediments. In relation to species distribution in peats, the prevailing part of Cr3+ is strongly bound in oxidizable organic substrate, while Cu2+ is highly enriched in the moderately reducible F4(MRO) and the most labile F2(EXC) fractions. Cd2+ and Zn2+ are predominantly bound in the labile F1(EXC) and F2(CARB) fractions. Diversity of the predominant binding phases for the studied metals suggests rather weak competition for binding sites between chromium and copper ions; the strongest competition between the sorbed metal ions is anticipated for F1(EXC) and F2(CARB) fractions.  相似文献   

16.
In this study, we contrast the fluorescent properties of dissolved organic matter (DOM) in fens and bogs in a Northern Minnesota peatland using excitation emission matrix fluorescence spectroscopy with parallel factor analysis (EEM‐PARAFAC). EEM‐PARAFAC identified four humic‐like components and one protein‐like component and the dynamics of each were evaluated based on their distribution with depth as well as across sites differing in hydrology and major biological species. The PARAFAC‐EEM experiments were supported by dissolved organic carbon measurements (DOC), optical spectroscopy (UV‐Vis), and compositional characterization by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectroscopy (FT‐ICR MS). The FT‐ICR MS data indicate that metabolism in peatlands reduces the molecular weights of individual components of DOM, and oxygen‐rich less aromatic molecules are selectively biodegraded. Our data suggest that different hydrologic and biological conditions within the larger peat ecosystem drive molecular changes in DOM, resulting in distinctly different chemical compositions and unique fluorescent fingerprints. PARAFAC modeling of EEM data coupled with ultrahigh resolution FT‐ICR MS has the potential to provide significant molecular‐based information on DOM composition that will support efforts to better understand the composition, sources, and diagenetic status of DOM from different terrestrial and aquatic systems.  相似文献   

17.
通过模拟实验研究了生物膜胞外聚合物(EPS)和乙二胺四乙酸(EDTA) 2种典型溶解有机质(DOM)成分对自然水体生物膜体系中过氧化氢(H2O2)生成特征的影响, 并研究了体系初始pH值、 DOM浓度、 溶解氧(DO)等因素的影响. 结果表明, DOM的存在对自然水体生物膜体系中H2O2的生成有明显影响. 光照能促使EPS产生H2O2, 而EPS的存在对生物膜产生H2O2的直接影响不显著, EPS与生物膜共存体系中的H2O2由二者共同产生; EDTA本身不产生H2O2, 且对H2O2分解影响很小, 但会显著抑制生物膜产生H2O2, 且浓度越高抑制作用越明显. 体系pH值、 DOM浓度和DO均能不同程度影响EPS产生H2O2及EDTA抑制生物膜产生H2O2的作用.  相似文献   

18.
Humic substances and other dissolved organic matter (DOM) in Lake Biwa and the surrounding rivers were investigated to elucidate their origins and behavior. An annual increase in chemical oxygen demand (COD) has been observed in the northern basin of Lake Biwa since 1985. The concentrations of dissolved organic carbon (DOC) in the northern and southern basins of Lake Biwa were 1.7-2.4 mgC/l and 1.9-2.6 mgC/l, respectively. The DOC concentrations tended to be high in summer and low in winter, and the seasonal changes in the concentrations of humic substances were small. The humic substances content of DOM was considered to be comparatively small because the ratio of the concentration of humic substances to DOC was in the range of 0.14-0.32. From the results of the fractionation of DOM in lake waters, it was estimated that hydrophobic acids, such as humic substances and hydrophilic acids, were about 25% and 45%, respectively. The main origin of hydrophobic acids in Lake Biwa may be humic substances from soils around the rivers that flow into Lake Biwa, while hydrophilic acids may be due to the inner production by phytoplankton. Therefore, the increase of COD in the northern basin of Lake Biwa may be attributed to the contributions of not only humic substances but also hydrophilic acids.  相似文献   

19.
Pathak R  Rao GN 《Talanta》1997,44(8):1447-1453
A poly[styrene-co-(divinylbenzene)] resin (XAD-4) functionalized with 1-hydrazinophthalazine ligand has been prepared and its analytical properties investigated. The pH dependence of sorption of metal ion on the resin has been determined for Cu(II), Ni(II), Co(II), Zn(II), Cd(II), Pb(II), Fe(III) and Cr(III). Trace amounts of these metal ions were quantitatively retained on the resin and recovered by eluting with 1 mol l(-1) hydrochloric acid. The resin was found to be selective for Fe(III) and its separation from other metal ions was carried out effectively. Metal ions concentrations were determined using AAS.  相似文献   

20.
An analytical separation scheme is presented for the isolation of low-molecular-weight metal species (< 10 kDa) in plants. After ultrafiltration of the aqueous plant extracts isotachophoresis or gel chromatography is used for pre-separation and HPLC at a cyclodextrin-phase for further separation of metal containing fractions. Trace metals are detected off-line by using either adsorptive stripping voltammetry for platinum or AAS for zinc and magnesium. It is shown that platinum and zinc detection closely correlate with pulsed amperometric detection (PAD), while magnesium behaves differently. PAD is carried out after post-column addition of sodium hydroxide, thus enabling a sensitive and selective detection of carbohydrates. It is demonstrated that cyclic voltammetry is a useful tool for further characterization of the PAD-detectable metal species. By comparison of the cyclic voltammograms of carbohydrate standards, including carbohydrate-metal species, with the respective voltammograms obtained from HPLC fractions, carbohydrate species isolated from the samples can be considered as being either partly oxidized sugars (sugar alcohols or sugar acids) or glycosidically bound sugars. Received: 26 January 1998 / Revised: 19 June 1998 / Accepted: 24 June 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号