首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zermelo and Loschmidt pointed out that the equations of classical mechanics are recurrent and reversible, while those of macroscopic physics are non-recurrent and irreversible. These observations cast doubt on the possibility of deriving the macroscopic equations from classical mechanics. Therefore an example is presented to show that nonrecurrent equations can be derived from recurrent ones, and another example to show that irreversible equations can be derived from reversible ones. The irreversible equation derived in the second example describes either decaying, growing, or undamped motions, depending upon the initial conditions. Thus the specification of initial conditions introduces the irreversibility. These demonstrations may help to clarify previous resolutions of the recurrence and reversibility paradoxes.  相似文献   

2.
Measurement-induced nonlocality   总被引:1,自引:0,他引:1  
Luo S  Fu S 《Physical review letters》2011,106(12):120401
We interpret the maximum global effect caused by locally invariant measurements as measurement-induced nonlocality, which is in some sense dual to the geometric measure of quantum discord [Dakic, Vedral, and Brukner, Phys. Rev. Lett. 105, 190502 (2010)]. We quantify measurement-induced nonlocality from a geometric perspective in terms of measurements, and obtain analytical formulas for any dimensional pure states and 2 × n dimensional mixed states. We further derive a tight upper bound to measurement-induced nonlocality in general case. The physical significance of measurement-induced nonlocality is discussed in the context of correlations, entanglement, quantumness, and cryptographic communication.  相似文献   

3.
It is argued that the validity of the predictions of quantum theory in certain spincorrelation experiments entails a violation of Einstein's locality idea that no causal influence can act outside the forward light cone. First, two preliminary arguments suggesting such a violation are reviewed. They both depend, in intermediate stages, on the idea that the results of certain unperformed experiments are physically determinate. The second argument is entangled also with the problem of the meaning of physical reality. A new argument having neither of these characteristics is constructed. It is based strictly on the orthodox ideas of Bohr and Heisenberg, and has no realistic elements, or other ingredients, that are alien to orthodox quantum thinking.This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098.  相似文献   

4.
Aurelien Drezet 《Pramana》2007,68(3):389-396
In a paper by Home and Agarwal [1], it is claimed that quantum nonlocality can be revealed in a simple interferometry experiment using only single particles. A critical analysis of the concept of hidden variable used by the authors of [1] shows that the reasoning is not correct.   相似文献   

5.
We investigate nonlocality distillation using measures of nonlocality based on the Elitzur-Popescu-Rohrlich decomposition. For a certain number of copies of a given nonlocal box, we define two quantities of interest: (i) the nonlocal cost and (ii) the distillable nonlocality. We find that there exist boxes whose distillable nonlocality is strictly smaller than their nonlocal cost. Thus nonlocality displays a form of irreversibility which we term "bound nonlocality." Finally, we show that nonlocal distillability can be activated.  相似文献   

6.
After the work of Suppes and Zanotti it is clear that the proof of the impossibility of local theories is a probability argument. The notion of locality is essentially a principle of conditional statistical independence which is strictly tied to that of exchangeability. De Finetti's celebrated representation theorem makes the connection clear. The way in which Bell's experiment is performed suggests that the probability function which is more suitable to describe it is not exchangeable, but partially exchangeable. It is known that partially exchangeable probability functions show a nonlocal behavior. Working with these functions, it is possible to make use of observations regarding one stochastic process in order to change the distribution of another process. We enlarge to uncertain evidence a classical probability function we have used in deriving some quantum correlations. By means of this enlargement we give simple examples of a nonlocal probability function.  相似文献   

7.
We use techniques for lower bounds on communication to derive necessary conditions (in terms of detector efficiency or amount of superluminal communication) for being able to reproduce the quantum correlations occurring in Einstein-Podolsky-Rosen-type experiments with classical local hidden-variable theories. As an application, we consider n parties sharing a Greenberger-Horne-Zeilinger-type state and show that the amount of superluminal classical communication required to reproduce the correlations is at least n(log((2)n-3) bits and the maximum detector efficiency eta(*) for which the resulting correlations can still be reproduced by a local hidden-variable theory is upper bounded by eta(*)相似文献   

8.
Physisorption or chemisorption from dilute polymer solutions often entails irreversible polymer-surface bonding. We present a theory of the resultant nonequilibrium layers. While the density profile and loop distribution are the same as for equilibrium layers, the final layer comprises a tightly bound inner part plus an outer part whose chains make only fN surface contacts where N is chain length. The contact fractions f follow a broad distribution, P(f) approximately f(-4/5), in rather close agreement with strong physisorption experiments [H. M. Schneider, Langmuir 12, 994 (1996)]].  相似文献   

9.
10.
The outcomes obtained in Bell tests involving two-outcome measurements on two subsystems can, in principle, generate up to 2?bits of randomness. However, the maximal violation of the Clauser-Horne-Shimony-Holt inequality guarantees the generation of only 1.23?bits of randomness. We prove here that quantum correlations with arbitrarily little nonlocality and states with arbitrarily little entanglement can be used to certify that close to the maximum of 2?bits of randomness are produced. Our results show that nonlocality, entanglement, and randomness are inequivalent quantities. They also imply that device-independent quantum key distribution with an optimal key generation rate is possible by using almost-local correlations and that device-independent randomness generation with an optimal rate is possible with almost-local correlations and with almost-unentangled states.  相似文献   

11.
Based on the skew information, we present a quantity, uncertainty-induced quantum nonlocality (UIN) to measure the quantum correlation. It can be considered as the updated version of the original measurement-induced nonlocality (MIN) preserving the good computability but eliminating the non-contractivity problem. For 2×d2×d-dimensional state, it is shown that UIN can be given by a closed form. In addition, we also investigate the maximal uncertainty-induced nonlocality.  相似文献   

12.
Characteristics of observers in relativity theory are critically examined. For field measurements in Minkowski spacetime, the Bohr‐Rosenfeld principle implies that the connection between actual (i.e., noninertial) and inertial observers must be nonlocal. Nonlocal electrodynamics of non‐uniformly rotating observers is discussed and the consequences of this theory for the phenomenon of spin‐rotation coupling are briefly explored.  相似文献   

13.
14.
15.
Entropy creation rate is introduced for a system interacting with thermostats (i.e., for a system subject to internal conservative forces interacting with "external" thermostats via conservative forces) and a fluctuation theorem for it is proved. As an application, a time scale is introduced, to be interpreted as the time over which irreversibility becomes manifest in a process leading from an initial to a final stationary state of a mechanical system in a general nonequilibrium context. The time scale is evaluated in a few examples, including the classical Joule-Thompson process (gas expansion in a vacuum).  相似文献   

16.
Entanglement, the Einstein–Podolsky–Rosen (EPR) paradox and Bell’s failure of local-hiddenvariable (LHV) theories are three historically famous forms of “quantum nonlocality”. We give experimental criteria for these three forms of nonlocality in multi-particle systems, with the aim of better understanding the transition from microscopic to macroscopic nonlocality. We examine the nonlocality of N separated spin J systems. First, we obtain multipartite Bell inequalities that address the correlation between spin values measured at each site, and then we review spin squeezing inequalities that address the degree of reduction in the variance of collective spins. The latter have been particularly useful as a tool for investigating entanglement in Bose–Einstein condensates (BEC). We present solutions for two topical quantum states: multi-qubit Greenberger–Horne–Zeilinger (GHZ) states, and the ground state of a two-well BEC.  相似文献   

17.
Bell nonlocality and Einstein-Podolsky-Rosen(EPR) steering are very important quantum correlations in composite quantum systems. Bell nonlocality of a bipartite state is observed in some local quantum measurements, while EPR steering was first observed by Schr o¨dinger in the context of famous EPR paradox. In this paper, we discuss the Bell nonlocality and EPR steering of bipartite states, including mathematical definitions and characterizations of these two quantum correlations, the convexity as well as the closedness of the sets of all Bell local states and all EPR unsteerable states, respectively. We also derive sufficient conditions for a state to be steerable; these conditions imply that Alice can steer Bob's state whenever Alice has two POV measurements such that the sets of Bob's normalized conditional states become two disjoint sets of pure states, or whenever she has one POV measurement such that Bob's normalized conditional states become a linearly independent set of pure states.  相似文献   

18.
19.
Steering is a form of quantum nonlocality that is intimately related to the famous Einstein-Podolsky-Rosen (EPR) paradox that ignited the ongoing discussion of quantum correlations. Within the hierarchy of nonlocal correlations appearing in nature, EPR steering occupies an intermediate position between Bell nonlocality and entanglement. In continuous variable systems, EPR steering correlations have been observed by violation of Reid's EPR inequality, which is based on inferred variances of complementary observables. Here we propose and experimentally test a new criterion based on entropy functions, and show that it is more powerful than the variance inequality for identifying EPR steering. Using the entropic criterion our experimental results show EPR steering, while the variance criterion does not. Our results open up the possibility of observing this type of nonlocality in a wider variety of quantum states.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号