首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two kinds of electrode materials Ni(OH)2 and Ni(OH)2@Zn(OH)2 composite are fabricated on nickel foam. Electrochemical experiments indicate Ni(OH)2@Zn(OH)2 composite deserves further study due to high specific capacitance and good cycle stability, so that it can achieve energy storage and conversion as much as possible. When the hydrothermal time is different, the electrochemical performance of the sample is also different. Accurately, samples can obtain better electrochemical performance at 15 h, and the maximum specific capacitance of Ni(OH)2@Zn(OH)2 is 7.87 F cm?2 compared to Ni(OH)2 (0.61 F cm?2) at 5 mA cm?2. Even at 50 mA cm?2, specific capacitance is 5.24 F cm?2 and rate capability is 66.6%. Furthermore, Ni(OH)2@Zn(OH)2-15 h loses 19.8% after 1000 cycles, revealing the composite has an outstanding stable cycle. These properties also indicate Ni(OH)2@Zn(OH)2-15 h is a promising electrode material.  相似文献   

2.
Electrochemical behavior of poly-3,4-ethylenedioxythiophene composites with manganese dioxide (PEDOT/MnO2) has been investigated by cyclic voltammetry and electrochemical quartz crystal microbalance at various component ratios and in different electrolyte solutions. The electrochemical formation of PEDOT film on the electrode surface and PEDOT/MnO2 composite film during the electrochemical deposition of manganese dioxide into the polymer matrix was gravimetrically monitored. The mass of manganese dioxide deposited into PEDOT at different time of electrodeposition and apparent molar mass values of species involved into mass transfer during redox cycling of PEDOT/MnO2 composites were evaluated. It was found that during the redox cycling of PEDOT/MnO2 composite films with various MnO2 content, the oppositely directed fluxes of counterions (anions and cations) occur, resulting in a change of the slope of linear parts of the Δf–E plots with changing the mass fraction of MnO2 in the composite film.Rectangular shape of cyclic voltammograms of PEDOT/MnO2 composites with different loadings of manganese dioxide was observed, which is characteristic of the pseudocapacitive behavior of the composite material. Specific capacity values of PEDOT/MnO2 composites obtained from cyclic voltammograms were about 169 F g?1. The specific capacity, related to the contribution of manganese dioxide component, was about 240 F g?1.  相似文献   

3.
MnO2/graphene oxide sheet composite (MnO2/GOS) has been co-electrodeposited on the thermally treated carbon paper (TTCP) in phosphate buffer solution containing GOS and KMnO4. The resulted samples have been characterized by scanning and transmission electron microscopy, Raman, X-ray diffraction, and X-ray photoelectron energy spectroscopy. The results show that the synthesized MnO2 may be δ-MnO2 and the morphology of MnO2/GOS is very different from that of MnO2, indicating that the introduction of GOS in electrolyte can influence the morphology during the deposition. The capacitive properties of the samples are investigated by using cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The specific capacitance of MnO2 for MnO2/GOS can reach about 829 F g?1 at discharged current density of 1.0 A g?1 in 1 M Na2SO4 aqueous solution, which is larger than that of MnO2 deposited on TTCP. The composite of MnO2/GOS also exhibits excellent cyclic stability with a decrease of 18.5 % specific capacitance after 1,500 cycles.  相似文献   

4.
Mesoporous manganese oxides (MnO2) were synthesized via a facile chemical deposition strategy. Three kinds of basic precipitants including sodium carbonate (Na2CO3), sodium bicarbonate (NaHCO3), and sodium hydroxide (NaOH) were employed to adjust the microstructures and surface morphologies of MnO2 materials. The obtained MnO2 materials display different microstructures. Great differences are observed in their specific surface area and porosity properties. The microstructures and surface morphologies characteristics of MnO2 materials largely determine their pseudocapacitive behavior for supercapacitors. The MnO2 prepared with Na2CO3 precipitant exhibits the optimal microstructures and surface morphologies compared with the other two samples, contributing to their best electrochemical performances for supercapacitors when conducted either in the single electrode tests or in the capacitor measurements. The optimal MnO2 electrode exhibits a high specific capacitance (173 F g–1 at 0.25 A g?1), high-rate capability (123 F g?1 at 4 A g?1), and excellent cyclic stability (no capacitance loss after 5,000 cycles at 1 A g?1). The optimal activated carbon//MnO2 hybrid capacitor exhibits a wide working voltage (1.8 V), high-power and high-energy densities (1,734 W kg?1 and 20.9 Wh kg?1), and excellent cycling behavior (93.8 % capacitance retention after 10,000 cycles at 1 A g?1), indicating the promising applications of the easily fabricated mesoporous MnO2 for supercapacitors.  相似文献   

5.
Advanced carbon materials formed from abundant biomass are an exciting and promising class for energy devices due to the clear advantages of low cost, sustainability and good physical and electrochemical properties. However, these materials typically do not compete well with their metal functionalised counterparts. In this work, we demonstrate that xCo(OH)2–(1?x)Ni(OH)2 with various Ni:Co ratios can be deposited onto biomass-derived carbon to make a hybrid inorganic-carbon electrode with tuneable physical features and electrochemical performance. These features were tuned by adjusting the Ni:Co ratio within precursor solutions. The electrodes had shown a capacitance ranging from 780.7 to 2041 F g?1, which is very close to the theoretical value for Ni(OH)2 (2365 F g?1). A hypothesis is presented to help explain this performance for a modified, biomass-derived carbon electrode.  相似文献   

6.
Porous network-like MnO2 thick films are successfully synthesized on a flexible stainless steel (SS) mesh using a simple and low-cost electrodeposition method followed by an electrochemical activation process. Morphology, chemical composition, and crystal structure of the prepared electrodes before and after the activation process are determined and compared by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analyses. The results show that the implementation of the electrochemical activation process does not change the chemical composition and crystal structure of the films, but it influences the surface morphology of the MnO2 thick layer to a flaky nanostructure. Based on the electrochemical data analysis, the maximum specific capacitance of 1400 mF (381 F g?1) and 3700 mF (352 F g?1) are measured for small (2.6 cm2) and large (10 cm2) surface area electrodes, respectively. In addition, a flexible symmetric MnO2//MnO2 solid-state supercapacitor shows a capacitance of 0.3 F with about 98% retention at different bending angles from 0 to 360°.  相似文献   

7.
In this report, a simple and facile method was developed for preparation of MnO2 nanowires by calcinations of MnOOH nanowires previously synthesized under hydrothermal conditions, using hexamethylenetetramine as a reducing agent, without any template. The as-prepared MnO2 nanowires displayed an enhanced specific capacitance (262.7 F g?1) and good cycling stability (e.g., no loss within 1,500 cycles), showing good electrochemical performances as electrode material for supercapacitors.  相似文献   

8.
A variety of MnO2 nanorods containing one or two transition metals (M) (with M?=?Al and/or Ni) have been successfully synthesised via a facile hydrothermal synthesis route. The physical–chemical properties and electrochemical performance of manganese oxide were analysed by X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-OES), Fourier transform infrared spectrometer (FT-IR), scanning electron microscopy (SEM), Brunauer–Emmett–Teller method (BET), galvanostatic discharge and cyclic voltammetry (CV). The result indicated that α-type MnO2 was obtained, and a small quantity of Al and/or Ni were embedded into the crystal lattice of manganese oxide instead of the partial Mn ion, which resulted in anisotropic expansion of the MnO2 unit cell. The doping of Al can strengthen Mn–O bonds in the [MnO6] octahedral and increases the specific surface area of the modified material (i.e., Al–MnO2 is 119 m2 g?1). Interestingly, MnO2 electrode co-doped with equimolar Al and Ni exhibited the highest specific capacity of 169 mAh g?1 at 0.05 mA cm?2. The substantial enhancement of the electrochemical lithium storage capacity was due to the ameliorating of integrative factors, such as high specific surface area, excellent lattice parameters and lower electrical resistance, as well as short Li+ and electron transport length. In addition, a more stable host skeleton also guaranteed an endurable Li+ intercalation behaviour during the discharge process.  相似文献   

9.
Crosslinked-polyaniline (CPA) nano-pillar arrays adsorbed on the surface of reduced graphene oxide (RGO) sheets were synthesized by in situ solution polymerization through two steps of reduction. The electrochemical analyses demonstrated that the befittingly reduced CPA/RGO composite exhibited high performance as electrode materials for supercapacitors. The CPA/RGO composite showed very high specific capacitance of 1532 F g?1 at a scan rate of 10 mV s?1 or 694 F g?1 at a current density of 2 A g?1 in 1 M H2SO4 electrolyte, as well as great energy density of 61.4 W h kg?1 at a current density of 2 A g?1. The electrode material also had decent power density of 4 kW kg?1 at a current density of 10 A g?1, and good cycling stability of 92.5 % capacitance retained after 500 cycles of cyclic voltammetry at 500 mV s?1. The neat microstructures and super electrochemical properties suggest the potential use of the composites in supercapacitors.  相似文献   

10.
本文采用溶胶凝聚方法制备了超细氢氧化亚镍电极材料并通过在其中掺加适量碳纳米管的方法大大提高了电极的比容量并有效改善了电极材料的阻抗特性。掺有20%碳纳米管的氢氧化亚镍复合电极材料的单电极比容量可达到320 F·g-1。本文分别采用氢氧化亚镍/碳纳米管复合电极作为正极,活性炭作为负极,6 mol·L-1 KOH作为电解液制备了复合型电化学电容器。采用上述方法制备的复合型电容器工作电压达到1.6 V,电容器质量比容量达到60 F·g-1。复合型电容器能量密度达到20.11 Wh·kg-1,最大功率密度达到8.6 kW·kg-1,兼具高能量特性和优良的大电流放电特性。  相似文献   

11.
Herein, we introduce a facile, inexpensive and fast, and additive-/template-free method to fabricate highly stable nickel hydroxide nanofibers for supercapacitor applications. Ni(OH)2 nanofibers were electrodeposited on electro-etched carbon fiber paper by a potential step method (Ni(OH)2-ECFs) and characterized using scanning electron microscopy and X-ray diffraction analysis. Electrochemical performance of Ni(OH)2-ECF was studied in symmetric two-electrode assembly by cyclic voltammetry, galvanostatic charge–discharge method, and electrochemical impedance spectroscopy. A specific capacitance of 277.5 F g?1 was achieved for the symmetric supercapacitor based on two identical Ni(OH)2-ECFs. Our findings demonstrate high-rate capability with excellent stability (approximately 100 % capacitance retention) for Ni(OH)2-ECF supercapacitor, originated from the intimate contact between Ni(OH)2 and ECF. Our studies suggest the Ni(OH)2-ECF electrode as an excellent material for supercapacitor applications.  相似文献   

12.
Lithium–sulfur (Li–S) battery is considered as a promising option for electrochemical energy storage applications because of its low-cost and high theoretical capacity. However, the practical application of Li–S battery is still hindered due to the poor electrical conductivity of S cathode and the high dissolution/shuttling of polysulfides in electrolyte. Herein, we report a novel physical and chemical entrapment strategy to address these two problems by designing a sulfur–MnO2@graphene (S–MnO2@GN) ternary hybrid material structure. The MnO2 particles with size of ~ 10 nm are anchored tightly on the wrinkled and twisted GN sheets to form a highly efficient sulfur host. Benefiting from the synergistic effects of GN and MnO2 in both improving the electronic conductivity and hindering polysulfides by physical and chemical adsorptions, this unique S–MnO2@GN composite exhibits excellent electrochemical performances. Reversible specific capacities of 1416, 1114, and 421 mA h g?1 are achieved at rates of 0.1, 0.2, and 3.2 C, respectively. After a 100 cycle stability test, S–MnO2@GN composite cathode could still maintain a reversible capacity of 825 mA h g?1.  相似文献   

13.
Mesoporous silica KIT-6 has novel three-dimensional gyroidal channel structure, space group of 1a-3d, and ordered tunable pores up to 10 nm. In this paper, such mesostructured silica was employed as hard template to prepare semicrystalline gyroidal mesoporous MnO2. The structure was investigated by XRD, TEM and HRTEM, and found to be of high quality 1a-3d symmetry, in good accordance with the template structure. The material has a BET surface of 118 m2·g^-1 and pore volume of 0.35 cm3·g^- 1 after eliminating template. Mesoporous MnO2 has shown good electrochemical property as supercapacitor material in 1 mol·L^-1 Na2SO4 and 1 mol·L^-1 LiClO4 solutions, but interesting pseudocapacitance behavior was observed in the case of 6 mol·L^-1 KOH. It was found that mesoporous MnO2 performed stable reversible electrochemical behavior with capacitance of 220 F·g^-1 in a potential range of -0.1-0.55 V vs. Hg/HgO in alkaline solution, demonstrating that it is a promising novel electrode material for the fabrication of electrochemical capacitors.  相似文献   

14.
The supercapacitive performances of supercapacitor mainly depend on the physical nanostructure and micro-morphology of electrode materials. Here, we demonstrated the design, synthesis and electrochemical performances of core-shell hollow carbon nanofiber@nickel-cobalt-layered double hydroxide (HCNF@ Ni0.67Co0.33-LDH) nanocomposites with an optimized Ni/Co molar ratio of 2:1. The HCNF was used as superiorly conductive core to sustain the nanoporous silky Ni0.67Co0.33-LDH shell, which can efficiently provide fast transport pathways for electrons and electrolyte ions. The outstanding specific capacitance of 2486 F g?1 at 1 A g?1 based on galvanostatic charge-discharge curves were acquired for the highly electroactive HCNF@Ni0.67Co0.33-LDH. Furthermore, the HCNF@Ni0.67Co0.33-LDH electrode delivered a distinguished rate capability with a specific capacitance of 1890 F g?1 even at 15 A g?1. Notably, an asymmetric supercapacitor with HCNF@Ni0.67Co0.33-LDH as cathode and HCNF as anode was devised, which presented a prominent specific capacitance of 228 F g?1, good energy density of 62.1 Wh kg?1, and impressive cycling stability (90.6% capacitance retention after 10,000 cycles).  相似文献   

15.
The efficient utilization of natural biomass as renewable raw materials is of importance. We herein prepared porous carbon fibers (PCFs) by activation of the extracted cellulose microfibers from the agriculture byproduct of corn straw. Different from the porous carbons (PCs) by directly activating straw, the obtained PCFs had typical one-dimensional morphology with high surface area (2013 m2 g?1) and large pore volume (1.27 cm3 g?1). The influence of the ZnCl2/cellulose mass ratio on the electrochemical performance was studied, and the optimized PCF(1:1) possessed a much higher specific capacitance than the PC(1:1) sample, which was attributed to the improved specific surface area as well as the fiber-like morphology where it had short ion diffusion route and small interfacial resistance in comparison to PCs. PCFs have a high specific capacitance of 230 F g?1 at 0.5 A g?1, and 183 F g?1 was retained at 20 A g?1 (79.6%), revealing an excellent rate capability. The assembled symmetrical supercapacitor exhibited a wide potential window of 1.8 V, small electrochemical impedance, and superior cycle performance. Moreover, a high energy density of 16.0 Wh kg?1 was obtained at a power density of 450.4 W kg?1, which was preserved of 6.9 Wh kg?1 at a high power density of 14,194.3 W kg?1.  相似文献   

16.
Micro- and mesoporous carbon spheres (MMCSs) are synthesized by the polymerization of colloidal silica-entrapped resorcinol/formaldehyde in the presence of ammonia as catalyst, followed by carbonization, sodium hydroxide (NaOH) etching to remove silica template, and potassium hydroxide (KOH) activation. The morphology and microstructure are characterized by scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption–desorption. The results show that a typical sample (denoted as MMCS-3) unites the characteristics of regular spherical shape (uniform diameters of 500 nm), high specific surface area (1,620 m2 g?1), large pore volume (1.037 cm3 g?1), and combined micropores and mesopores (11.0 nm), which endows MMCS-3 good electrochemical performance. MMCS-3 as supercapacitor electrode shows a specific capacitance of 314 F g?1 under a current density of 0.5 A g?1 and low internal resistance of 0.2 Ω in 6 M KOH aqueous solution. The electrochemical capacitance still retains 198 F g?1 at a high current density of 10 A g?1. After 500 cycle numbers of galvanostatic charge/discharge at 0.5 A g?1, MMCS-3 electrode still remains the specific capacitance of 301 F g?1 with the retention of 96 %. This study highlights the potential of well-designed MMCSs as electrodes for widespread supercapacitor applications.  相似文献   

17.
A Co(OH)2/graphene sheet-on-sheet hybrid has been fabricated by in situ one-step hydrothermal growth for electrochemical pseudocapacitors application. The hybrid delivers a specific capacitance of 436 F?g?1 at a current density of 50 A?g?1. Besides, it can keep a specific capacitance of 651 F?g?1 after 10,000 cycles at 10 A?g?1. The excellent performance can be ascribed to the high-quality graphene matrix, regular morphology and high crystallinity of Co(OH)2, and unique sheet-on-sheet structure of the hybrid, endowing enhanced transportation of electrons and Faradic redox reactions. The results demonstrate that the Co(OH)2/graphene hybrid with a sheet-on-sheet structure is promising for high-performance energy storage applications.  相似文献   

18.
In this study, NiS2 nanocubes were successfully synthesized by a novel facile solvothermal method using NiC2O4·2H2O microstructures and used as an electrode for high-performance supercapacitors. The electrochemical properties of the prepared NiS2 electrode were studied using galvanostatic charge–discharge analysis, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) studies. Its maximum specific capacitance was 2077 F g?1 at a constant current density of about 0.65 A g?1. Further, the EIS results confirmed the pseudocapacitive nature of the NiS2 electrode. The experimental results suggested that the NiS2 electro-active material demonstrates excellent electrochemical performance with high specific capacitance, low resistance, and excellent cycling stability.  相似文献   

19.
Simultaneous electrochemical generation and functionalization of nano-sized graphite from graphite had been carried out in a non-fluoroanion-based ionic liquid, namely, triethylmethylammonium methylsulfate (TEMAMS) containing water and acetonitrile (AN) in different weight ratios. The oxygen-based functional groups attached with the exfoliated material had been identified using Fourier transform infrared spectroscopy (FTIR), and morphological changes were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A symmetrical supercapacitor was fabricated using the exfoliated nano-sized graphite, and the influence of surface functionalities on its performance was investigated using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge–discharge cycles (CC). The highest specific capacitance (C sp) value of 140 F g?1 at 0.25 A g?1 was obtained in 1.0 M H2SO4, followed by aqueous TEMAMS (125 F g?1), TEMAMS/acetonitrile (115 F g?1), and TEMAMS (106 F g?1) at 0.10 A g?1.  相似文献   

20.
Preparation and electrochemical behavior of new hybrid materials composed of multi-walled carbon nanotubes (CNTs) that were derivatized with poly(diallyldimethylammonium) chloride and modified with vanadium-mixed addenda Dawson-type heteropolytungstate, [P2W17VO62]8?, is described here. These nanostructured composite systems exhibited fast dynamics of charge propagation. They were characterized by the transport (effectively diffusional) kinetic parameter of approximately 8?×?10?8 cm?2 s?1/2 and the specific capacitance parameter of 82 F g?1 (at the charging/discharging current of 200 mA g?1). The latter parameter for bare CNTs was found to be only 50 F g?1 under analogous conditions. These observations were based on the results of galvanostatic charging–discharging, cyclic voltammetric, and AC impedance spectroscopic measurements. The improved capacitance properties were attributed to the systems’ pseudocapacitive features originating from the fast redox transitions of the [P2W17VO62]8? polyanions. In addition to the fast redox conduction, the proposed organic–inorganic hybrid materials exhibited interesting electrocatalytic activity toward reduction of bromate in the broad concentration range (sensitivity, 0.24 mA cm?2 mmol?1 dm3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号