首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The palladium-substituted tungstoantimonate(III) [Cs(2)Na(H(2)O)(10)Pd(3)(alpha-SbW(9)O(33))(2)](9-) (1) has been synthesized and characterized by IR, elemental analysis, and electrochemistry. Single-crystal X-ray analysis was carried out on Cs(3)KNa(5)[Cs(2)Na(H(2)O)(10)Pd(3)(SbW(9)O(33))(2)].16.5H(2)O, which crystallizes in the monoclinic system, space group P2(1)/m, with a = 13.3963(13) A, b = 19.5970(19) A, c = 18.1723(17) A, beta = 100.416(2) degrees, and Z = 2. Polyanion 1 represents the first structurally characterized palladium(II)-substituted polyoxometalate. The title polyoxoanion consists of two (alpha-Sb(III)W(9)O(33)) Keggin moieties linked via three Pd(2+) ions leading to a sandwich-type structure. The palladium centers are equivalent, and they are coordinated in a square-planar fashion. The central belt of 1 contains also one sodium and two cesium ions which reduces the symmetry of the polyanion to C(2)(v)(). Polyanion 1 was synthesized in good yield by reaction of Pd(CH(3)COO)(2) with Na(9)[SbW(9)O(33)] in aqueous acidic medium (pH 4.8). A cyclic voltammetry study of polyanion 1 in a pH 5 medium gives essentially the same characteristics as those observed for the deposition of Pd(0) on the glassy carbon electrode surface from Pd(2+) solutions. The film thickness increases with the number of potential cycles or the duration of potentiostatic electrolysis. The particularly sharp hydrogen sorption/desorption pattern indicates the excellent quality of the Pd(0) deposit from polyanion 1.  相似文献   

2.
The novel heteropolyanion [Cu(4)K(2)(H(2)O)(8)(alpha-AsW(9)O(33))(2)](8)(-) (1) has been synthesized and characterized by IR spectroscopy, elemental analysis, and magnetic studies. Single-crystal X-ray analysis was carried out on [K(7)Na[Cu(4)K(2)(H(2)O)(6)(alpha-AsW(9)O(33))(2)].5.5H(2)O](n)(K(7)Na-1), which crystallizes in the tetragonal system, space group P42(1)m, with a = 16.705(4) A, b = 16.705(4) A, c = 13.956(5) A, and Z = 2. Interaction of the lacunary [alpha-AsW(9)O(33)](9)(-) with Cu(2+) ions in neutral, aqueous medium leads to the formation of the dimeric polyoxoanion 1 in high yield. Polyanion 1 consists of two alpha-AsW(9)O(33) units joined by a cyclic arrangement of four Cu(2+) and two K(+) ions, resulting in a structure with C(2)(v)() symmetry. All copper ions have one terminal water molecule, resulting in square-pyramidal coordination geometry. Three of the copper ions are adjacent to each other and connected via two micro(3)-oxo bridges. EPR studies on K(7)Na-1 and also on Na(9)[Cu(3)Na(3)(H(2)O)(9)(alpha-AsW(9)O(33))(2)].26H(2)O (Na(9)-2) over 2-300 K yielded g values that are consistent with a square-pyramidal coordination around the copper(II) ions in 1 and 2. No hyperfine structure was observed due to the presence of strong spin exchange, but fine structure was observed for the excited (S(T) = 3/2) state of Na(9)-2 and the ground state (S(T) = 1) of K(7)Na-1. The zero-field (D) parameters have also been determined for these states, constituting a rare case wherein one observes EPR from both the ground and the excited states. Magnetic susceptibility data show that Na(9)-2 has antiferromagnetically coupled Cu(2+) ions, with J = -1.36 +/- 0.01 cm(-)(1), while K(7)Na-1 has both ferromagnetically and antiferromagnetically coupled Cu(2+) ions (J(1) = 2.78 +/- 0.13 cm(-)(1), J(2) = -1.35 +/- 0.02 cm(-)(1), and J(3) = -2.24 +/- 0.06 cm(-)(1)), and the ground-state total spins are S(T) = 1/2 in Na(9)-2 and S(T) = 1 in K(7)Na-1.  相似文献   

3.
4.
Bi LH  Kortz U 《Inorganic chemistry》2004,43(25):7961-7962
The dimeric, pentacopper(II) substituted tungstosilicate [Cu(5)(OH)(4)(H(2)O)(2)(A-alpha-SiW(9)O(33))(2)](10-) (1) has been synthesized in good yield using a one-pot procedure by reaction of Cu(2+) ions with the trilacunary precursor salt K(10)[A-alpha-SiW(9)O(34)]. The title polyanion represents the first polyoxotungstate substituted by 5 copper centers and the central copper-hydroxo-aqua fragment is completely unprecedented. In the course of the reaction, two [A-alpha-SiW(9)O(34)](10-) Keggin half-units have fused in an asymmetrical fashion resulting in the lacunary polyoxotungstate [Si(2)W(18)O(66)](16-). The vacancy in this species is stabilized by a magnetic cluster of five octahedrally coordinated Cu(2+) ions resulting in polyanion 1 with C(2v) symmetry.  相似文献   

5.
The influence of the nature of alkali metal cations on the structure of the species obtained from the trivacant precursor A-alpha-[SiW(9)O(34)](10-) has been studied. Starting from the potassium salt 1, K(10)A-alpha-[SiW(9)O(34)].24H(2)O, the sandwich-type complex 2, K(10.75)[Co(H(2)O)(6)](0.5)[Co(H(2)O)(4)Cl](0.25)A-alpha-[K(2)(Co(H(2)O)(2))(3)(SiW(9)O(34) )(2)].32H(2)O, has been obtained. The crystal structures of these two compounds consist of two A-alpha-[SiW(9)O(34)](10-) anions linked by a set of potassium (1) or cobalt plus potassium cations (2), and the relative orientation of the two half-anions is the same. Attempts to link two A-alpha-[SiW(9)O(34)](10-) anions by tungsten atoms instead of cobalt failed whatever the alkali metal cation. Moreover, the nondisordered structure of Cs(15)[K(SiW(11)O(39))(2)].39H(2)O is described. Two [SiW(11)O(39)](8-) anions are linked through a potassium cation with a "trans-oid" conformation, and the potassium occupies a cubic coordination site.  相似文献   

6.
In poly[[diaquaoxido[μ3‐trioxidoselenato(2−)]vanadium(IV)] hemihydrate], {[VO(SeO3)(H2O)2]·0.5H2O}n, the octahedral V(H2O)2O4 and pyramidal SeO3 building units are linked by V—O—Se bonds to generate ladder‐like chains propagating along the [010] direction. A network of O—H...O hydrogen bonds helps to consolidate the structure. The O atom of the uncoordinated water molecule lies on a crystallographic twofold axis. The title compound has a similar structure to those of the reported phases [VO(OH)(H2O)(SeO3)]4·2H2O and VO(H2O)2(HPO4)·2H2O.  相似文献   

7.
Reactions of a freshly prepared Zn(OH)2‐2x(CO3)x · yH2O precipitate, phenanthroline with azelaic and sebacic acid in CH3OH/H2O afforded [Zn(phen)(C9H15O4)2] ( 1 ) and [Zn2(phen)2(H2O)2(C10H16O4)2] · 3H2O ( 2 ), respectively. They were structurally characterized by X‐ray diffraction methods. Compound 1 consists of complex molecules [Zn(phen)(C9H15O4)2] in which the Zn atoms are tetrahedrally coordinated by two N atoms of one phen ligand and two O atoms of different monodentate hydrogen azelaato groups. Intermolecular C(alkyl)‐H···π interactions and the intermolecular C(aryl)‐H···O and O‐H···O hydrogen bonds are responsible for the supramolecular assembly of the [Zn(phen)(C9H15O4)2] complexes. Compound 2 is built up from crystal H2O molecules and the centrosymmetric binuclear [Zn2(phen)2(H2O)2(C10H16O4)2] complex, in which two [Zn(phen)(H2O)]2+ moieties are bridged by two sebacato ligands. Through the intermolecular C(alkyl)‐H···O hydrogen bonds and π‐π stacking interactions, the binuclear complex molecules are assembled into layers, between which the lattice H2O molecules are sandwiched. Crystal data: ( 1 ) C2/c (no. 15), a = 13.887(2), b = 9.790(2), c = 22.887(3)Å, β = 107.05(1)°, U = 2974.8(8)Å3, Z = 4; ( 2 ) P1¯ (no. 2), a = 8.414(1), b = 10.679(1), c = 14.076(2)Å, α = 106.52(1)°, β = 91.56(1)°, γ = 99.09(1)°, U = 1193.9(2)Å3, Z = 1.  相似文献   

8.
Deeth RJ  Elding LI 《Inorganic chemistry》1996,35(17):5019-5026
Density functional theory is applied to modeling the exchange in aqueous solution of H(2)O on [Pd(H(2)O)(4)](2+), [Pt(H(2)O)(4)](2+), and trans-[PtCl(2)(H(2)O)(2)]. Optimized structures for the starting molecules are reported together with trigonal bipyramidal (tbp) systems relevant to an associative mechanism. While a rigorous tbp geometry cannot by symmetry be the actual transition state, it appears that the energy differences between model tbp structures and the actual transition states are small. Ground state geometries calculated via the local density approximation (LDA) for [Pd(H(2)O)(4)](2+) and relativistically corrected LDA for the Pt complexes are in good agreement with available experimental data. Nonlocal gradient corrections to the LDA lead to relatively inferior structures. The computed structures for analogous Pd and Pt species are very similar. The equatorial M-OH(2) bonds of all the LDA-optimized tbp structures are predicted to expand by 0.25-0.30 ?, while the axial bonds change little relative to the planar precursors. This bond stretching in the transition state counteracts the decrease in partial molar volume caused by coordination of the entering water molecule and can explain qualitatively the small and closely similar volumes of activation observed. The relatively higher activation enthalpies of the Pt species can be traced to the relativistic correction of the total energies while the absolute DeltaH() values for exchange on [Pd(H(2)O)(4)](2+) and [Pt(H(2)O)(4)](2+) are reproduced using relativistically corrected LDA energies and a simple Born model for hydration. The validity of the latter is confirmed via some simple atomistic molecular mechanics estimates of the relative hydration enthalpies of [Pd(H(2)O)(4)](2+) and [Pd(H(2)O)(5)](2+). The computed DeltaH() values are 57, 92, and 103 kJ/mol compared to experimental values of 50(2), 90(2), and 100(2) kJ/mol for [Pd(H(2)O)(4)](2+), [Pt(H(2)O)(4)](2+), and trans-[PtCl(2)(H(2)O)(2)], respectively. The calculated activation enthalpy for a hypothetical dissociative water exchange at [Pd(H(2)O)(4)](2+) is 199 kJ/mol. A qualitative analysis of the modeling procedure, the relative hydration enthalpies, and the zero-point and finite temperature corrections yields an estimated uncertainty for the theoretical activation enthalpies of about 15 kJ/mol.  相似文献   

9.
Crown ethers can form complexes with inorganic and organic cations. Much attention has been focused on characterizing the structure of crown ether complexes. However, the X-ray structures of dibenzo-24-crown-8 compelxes:[K(DB24C8)(H2O)]2[Pd(SCN)4]0.5H2O.  相似文献   

10.
在pH=1.0的水溶液中,吡啶与Na12[Cu3(H2O)3(AsW9O33)2].xH2O反应,得到了 新的夹层型杂多钨酸盐(Hpy)4Na2H2[Cu(H2O){WO(H2O)}(WO)(AsW9O33)2].5H2O单 晶,用X射线单晶衍射法及元素分析确定了其结构,晶胞参数为:空间群P21/c, a=2.4681(5)nm,b=1.7474(3)nm,c=2.4853(5)nm,β=118.723(3)°,V=9.400(3) nm^3,Z=4,R1=0.0491,[Cu(H2O){WO(H2O)}(WO)AsW9O33)2]^8-是由两个a-B- AsW9O33^9-阴离子连接一个Cu^2+,两个W^6+形成的,中心离子的配位数分别为4, 5和6,讨论了标题化合物的形成条件。  相似文献   

11.
The first examples of polyoxometalate structures that incorporate embedded chelated heteroatoms point to new possibilities for stereochemical control of applications.  相似文献   

12.
13.
14.
Synthesis, Structure, and Vibrational Spectra of the Oxofluorotungstates(VI) Cs2[WO3F2] and Cs3[W2O4F7] Cs2[WO3F2] crystallizes from a melt with the same composition. The orthorhombic unit cell with a = 6.779(2), b = 7.668(1) and c = 11.626(3) Å, space group Pn21a, contains 4 formula units. The WO3F22? anion is polymer, W octahedrally coordinated according to the results of the X-ray crystal structure determination. Planar dioxodifluoro groups are linked into chains by oxygen atoms. The lengths of the W? O bonds are alternating. Cs3[W2O4F7] crystallizes trigonal, space group P3 m1, with a = 21.118(4) and c = 8.434(2) Å, Z = 9. The structure consists of two sets of crystallographically non equivalent dimeric anions with the formula [O2F3W? F? WO2F3]3?. Part of the ligand atoms are disordered. The vibrational spectra of both compounds show the presence of cis-dioxo groups of the terminal ligands.  相似文献   

15.
16.
Original and simple procedures for glassy carbon electrode modification with polyoxometalates (POMs), phosphotungstate [H7P8W48O184]33-, and Co(II)-containing silicotungstates [Co6(H2O)30{Co9Cl2(OH)3(H2O)9(beta-SiW8O31)3}]5- and [{Co3(B-beta-SiW9O33(OH))(B-beta-SiW8O29OH)2}2]22- give stable and very active surfaces for the hydrogen-evolution reaction (HER). For this purpose, the selected POMs fixed on Vulcan XC-72 were adsorbed on the electrode surface or were directly entrapped in polyvinylpyridine films on the electrode. Cyclic voltammetry and confocal microscopy results converge to indicate that the activation is related to the proton and electron reservoir-like behaviors of these molecular oxides and not to any electrode surface area increase. However, the Tafel parameters of the HER process, which are different from one POM to the next, are in the range of those of the best metallic electrodes.  相似文献   

17.
The ruthenium-supported isopolyanion [HW(9)O(33)Ru(II)(2)(dmso)(6)](7-) (1) is composed of a nonatungstate wheel stabilized by two Ru(dmso)(3) groups, representing the first structurally characterized Ru-coordinated polyoxotungstate and a novel class of isopolyanions supporting photochromic moieties.  相似文献   

18.
19.
The crystal and molecular structure of dipotassium di‐μ‐oxo‐bis[aqua(oxalato‐O1,O2)oxomolybdenum(III)] trihydrate, K2­[Mo2O4(C2O4)2(H2O)2]·3H2O, has been determined from X‐ray diffraction data. In the dimeric anion, which has approximate twofold symmetry, each Mo atom is in a distorted octahedral coordination, being bonded to one terminal oxo‐O atom, two bridging O atoms, two O atoms from the oxalato ligand and one from the water mol­ecule. Bond lengths trans to the multiple‐bonded terminal oxo ligand are larger than those in the cis position, confirming the trans influence as a generally valid rule.  相似文献   

20.
The reactivity of superoxide free radicals (O2 · –) generated electrochemically towards the oxydiacetate metal complexes, namely [VO(oda)(H2O)2], [Co(oda)(H2O)2] · H2O, and [Ni(oda)(H2O)3] · 1.5H2O (oda = oxydiacetate) was examined by cyclic voltammetry. The measurements were carried out in DMSO solution using a platinum electrode. Based on the height of the anodic peak Ea that corresponds to electrochemical oxidation O2 · – → O2 + e, in the absence and in the presence of the compounds in the mixture, their O2 · – scavenge ability was assessed. The influence of the type of the complex was briefly discussed. H2O2 was used to induce cellular injury in a mouse hippocampal cell line (HT22). The cytoprotection of chemical compounds was tested at the mitochondrial (MTT test) and plasma membrane level (LDH leakage). Dose‐dependent effect (10 and 100 μM of the complex) of investigated compounds was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号