首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
清洁能源在开发和利用过程中存在间歇性和不稳定性,开发高性能、高效率、环保清洁的新型储能器件可保障稳定的能源输出,实现能源转型.其中,金属基电池(如金属-空气电池,金属-硫电池等)具有低成本,高能量密度的优势,具有较高的应用价值.电池电极材料(催化剂)的合理设计影响着其储能效率,对可再生能源技术的发展具有重要作用.近年来,随着研究人员对电催化反应机理的深入理解,缺陷工程被普遍认为是增加催化活性位点数量,提升电池性能的有效策略.其原因在于缺陷可以提供大量不饱和位点,从而为电化学过程提供更多活性中心,增强电极催化效率,实现电化学动力学的提升.此外,缺陷工程实现了电池电极材料局部原子结构以及配位环境的可控调节,进一步调整电极材料的电子和结构特性,可显著提升电池的电化学动力学.本文系统总结了缺陷工程促进电催化性能的可行性策略和金属基电池电催化剂缺陷工程的最新进展.首先介绍了金属-空气电池和金属-硫电池的反应机理,明确金属基电池的反应机理和反应过程对于开发性能优异、环境适应性强催化剂至关重要.其次,归纳和总结了缺陷的种类(本征缺陷、阴离子空位、阳离子空位、晶格畸变和杂原子掺杂)及其引入的常用方法(...  相似文献   

2.
陈卫 《电化学》2015,21(6):503
可以预见,在相当一段时期内,能源和环境将是全球发展的两大主题. 其实,人类对能源的获取方式将对地球的生态环境和人类未来的生存状态和生活方式产生重要影响. 正因为如此,世界各国正在大力发展可再生能源和清洁能源. 电化学能源是将化学能高效转变为电能的一种能量转换方式,它历史悠久,但不断被改进和创新,尤其是近年来得到了较快的发展. 目前,电化学能源转换和存储器件主要包括一次电池(如锌锰电池等)、二次电池(如铅酸电池、镍氢电池、锂离子电池等)、燃料电池、金属-空气电池以及超级电容器等. 电化学能源和其它可再生能源相互补充、交叉利用将是未来清洁能源的主要发展方向.  相似文献   

3.
金属-空气电池能量密度大、成本低、无污染、可循环利用,是新能源汽车领域技术发展的重要方向.离子液体具有高的热稳定性、宽的电化学窗口、可以忽略的蒸气压、易于循环利用、无毒等优点,成为金属-空气电池研究中崭新的液体介质.将离子液体作为电解液应用于金属-空气电池体系,有望解决传统溶液体系存在的能量转化效率低、电解液干涸等技术难题,是一种极具研究价值的绿色新工艺.常见的金属负极有锂、锌、镁、铝、钠和硅.本文综述了离子液体作为电解液在这6种金属-空气电池中的应用研究进展和面临的挑战,并对其未来的发展方向进行了展望.  相似文献   

4.
可充电金属-空气电池因具有超高的能量密度被认为是最有发展前景的能源存储与转换装置之一.阴极电化学氧还原/生成反应缓慢动力学是影响金属-空气电池性能的关键因素,因此其充放电过程需要双功能催化剂进行催化.在此我们详细论述了近年来开发的新型双功能催化剂,包括贵金属、碳材料、过渡金属氧化物和复合材料.其中,强耦合过渡金属氧化物/纳米碳复合物成为新一代具有高催化活性的氧催化材料.最后,基于目前所存在的问题提出了几个未来可能的研究方向.  相似文献   

5.
随着能源危机的日益严峻,能源的储存和转换越来越受到人们的重视.目前人们加以开发和利用的清洁能源主要包括太阳能、风能、氢能、地热能以及电化学能等.其中,燃料电池和金属-空气电池等作为电化学器件为电化学能的开发及可持续利用提供了条件.特别是金属-空气电池以电极电位较负的金属如镁、铝、锌、铁等作负极,以空气中的氧或纯氧作正极,具有比能量高、性能稳定、价格便宜的特点.氧还原反应(ORR)和析氧反应(OER)是可再生电化学能量转换和储存过程中的两个关键电化学过程.贵金属(Pt/C, Ir/C, IrO2等)虽然具有高催化活性,但价格昂贵、资源匮乏限制了其大规模的使用和发展.此外,它们的催化性能单一,难以同时实现多反应的高效催化.目前,大量研究工作集中在开发低成本、高效的ORR和OER催化剂,用来代替昂贵的铂类贵金属催化剂.在能源器件设计中,由于OER和ORR反应发生在同一个电极上,若能制备出具有ORR和OER双功能催化性能的电催化剂,将在很大程度上降低能源器件的设计难度.最近,我们的研究工作揭示了吡啶-氮-钴(pyri-N-Co)配位结构在协同作用中的重要性,协同作用大幅度提升了NiCo2O4/N掺杂石墨烯的本征催化活性.虽然金属粒子与掺氮石墨烯的结合有利于催化活性和稳定性的提高,但二维石墨烯片之间由于π-π键相互作用,容易聚集和堆叠.在实际应用中,石墨烯片之间的堆叠会导致可达表面的损失,从而使复合催化剂利用率降低,结构稳定性变差.因此,制备富含充分暴露且高效的ORR/OER活性中心的电催化剂仍然是一个巨大挑战.本文采用激光辐照法和水热法制备了具有层间大孔和片内介孔相互交联结构且负载铁酸钴纳米颗粒的三维多级孔石墨烯复合电催化剂(CoFe/3D-NLG),研究了其微观结构与ORR/OER电催化性能的关系.比表面积和X射线光电子能谱测试结果表明, CoFe/3D-NLG具有大的比表面积(322.6 m2g-1)和孔体积(0.715 cm3g-1),并且富含吡啶氮-钴活性中心.电化学测试表明,对于OER电催化, CoFe/3D-NLG复合催化剂在10 mAcm-2处的过电势为304 mV,优于商用Ru O2催化剂的322 mV;对于ORR电催化, CoFe/3D-NLG的半波电位达到872 mV,非常接近商用Pt/C催化剂(876 mV).此外,作为可充电锌空气电池的空气电极催化剂, CoFe/3D-NLG展现出了超高的开路电压(1.56 V)、高功率密度(213 mWcm-2)以及超低充放电电压(0.63 V),并且具有良好的充放电循环稳定性.CoFe/3D-NLG优异的ORR/OER电催化性能主要归因于以下两点:1)大量的吡啶氮-钴活性位点极大地加快了缓慢的氧电催化动力学,提高了每个活性位点的ORR/OER本征催化活性;2)丰富的层间大孔和面内介孔多级孔结构促进了整个石墨烯结构中的高效传质,因而在电催化过程中吡啶氮-钴活性位点得以充分暴露于电解液中.  相似文献   

6.
近年来,人们越来越关注柔性可穿戴电子设备。柔性锌-空气电池由于有较高的理论能量密度以及对像人体一样不均匀表面的适应能力,有望成为下一代电子产品的电源。在柔性锌-空气电池研究领域,人们已经取得了较好的研究进展,各种柔性锌-空气电池的制备方法已被报道。本文阐述了近年来柔性锌-空气电池的主要成就以及面临的困难,特别是关注凝胶电解质、金属阳极以及柔性空气阴极对柔性锌-空气电池电化学性能的影响,最后讨论了柔性锌-空气电池面临的主要挑战与发展前景。  相似文献   

7.
正发展电解水制氢和金属-空气电池等电化学能源转化与存储技术对于解决日益严峻的能源短缺和环境污染问题具有重要意义~1。氧气析出反应(OER)是电解水制氢和金属-空气电池的关键半反应,但其缓慢的动力学过程却限制了上述能源技术的快速发展~(2,3)。钌/铱基催化剂是当前最为有效  相似文献   

8.
黄征  池波  蒲健  李箭 《化学进展》2013,(Z1):260-269
以锂为负极,空气为正极的锂-空气二次电池,由于其较高的理论能量密度(5 210 Wh.kg-1)而成为最具发展潜力的新型高能化学电源体系。通过近几年的研究和开发,人们对这一体系的了解不断深入。虽然对其电化学过程中的复杂反应机理尚没有完整系统的理论描述,但是在氧还原催化剂、空气电极材料及电解质材料等方面已开展了一些研究工作。本文综述了锂-空气电池的最新研究进展,对电池的正极材料、电解质和负极材料三个方面的研究进行了介绍,分析了该体系的缺陷及存在的问题,并展望了锂-空气电池的发展方向和前景。  相似文献   

9.
锂-空气二次电池因拥有超高的理论能量密度及巨大的应用潜力, 有望替代锂离子电池成为下一代高性能化学 电源. 高效、稳定电极的制备以及新型锂-空气电池器件的开发是提升电池电化学性能, 促进其应用的关键. 针对以上 问题, 本文对空气正极材料的开发与设计、锂负极的修饰保护以及锂-空气二次电池器件进行了简要介绍, 并对该领域 进行总结展望  相似文献   

10.
锌-空气电池因其拥有理想的能量密度和功率密度,并有望在能源转化与储存领域的广泛应用,引起国内外研究者的高度关注. 其中,空气电极作为氧催化反应的核心区域,更是整个锌-空气电池研究的重点. 近年来,非贵金属双功能催化剂及其电极以其高活性、低成本以及种类丰富等特点取得了较多的研究成果. 本文综述了非贵金属氧化物催化剂、碳基催化剂、碳载过渡金属化合物复合材料以及自支撑电极在锌-空气电池中的反应机制和研究进展,提出了高效双功能催化剂的构建策略,并对双功能催化剂/电极的发展趋势进行了展望.  相似文献   

11.

Successful design of reversible oxygen electrocatalysts does not only require to consider their activity towards the oxygen reduction (ORR) and the oxygen evolution reactions (OER), but also their electrochemical stability at alternating ORR and OER operating conditions, which is important for potential applications in reversible electrolyzers/fuel cells or metal/air batteries. We show that the combination of catalyst materials containing stable ORR active sites with those containing stable OER active sites may result in a stable ORR/OER catalyst if each of the active components can satisfy the current demand of their respective reaction. We compare the ORR/OER performances of oxides of Mn (stable ORR active sites), Fe (stable OER active sites), and bimetallic Mn0.5Fe0.5 (reversible ORR/OER catalyst) supported on oxidized multi-walled carbon nanotubes. Despite the instability of Mn and Fe oxide for the OER and the ORR, respectively, Mn0.5Fe0.5 exhibits high stability for both reactions.

  相似文献   

12.
It is extremely desirable to explore high-efficient, affordable and robust oxygen electrocatalysts toward rechargeable Zn–air batteries (ZABs). A 3D porous nitrogen-doped graphene encapsulated metallic Ni3Fe alloy nanoparticles aerogel (Ni3Fe-GA1) was constructed through a facile hydrothermal assembly and calcination process. Benefiting from 3D porous configuration with great accessibility, high electrical conductivity, abundant active sites, optimal nitrogen content and strong electronic interactions at the Ni3Fe/N-doped graphene heterointerface, the obtained aerogel showed outstanding catalytic performance toward the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Specifically, it exhibited an overpotential of 239 mV to attain 10 mA cm−2 for OER, simultaneously providing a positive onset potential of 0.93 V within a half-wave potential of 0.8 V for ORR. Accordingly, when employed in the aqueous ZABs, Ni3Fe-GA1 achieved higher power density and superior reversibility than Pt/C−IrO2 catalyst, making it a potential candidate for rechargeable ZABs.  相似文献   

13.
The oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) have attracted increasing attention for the sake of clean, renewable, and efficient energy technologies in recent years. The design of ORR/OER bifunctional electrocatalysts is a challenging task in the promotion of highly efficient rechargeable metal-air batteries as well as regenerative fuel cells. Owing to the wide adaptability of different types and ratios of metals in the interlayer space as well as the adjustable interlayer distance, composite materials with layered double hydroxides (LDHs) and their derivatives have recently been registered as electrode materials and catalysts supports for various electrochemical reactions. This study examines the recent development of bifunctional electrocatalysts based on LDHs for ORR/OER to expand the application of LDHs in the field of energy storage and conversion. Various bifunctional electrocatalysts associated with LDHs are discussed in detail to improve their performance. Finally, existing problems and future prospects for improving the performance of LDHs bifunctional electrocatalysts are proposed.  相似文献   

14.
Developing efficient catalysts toward both oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) is the core task for rechargeable metal-air batteries. Although integration of two active components should be an effective method to produce the bifunctional catalysts in principle, traditional techniques still can not attain fine tunable surface structure during material-hybridization process. Herein, we present a facile short-time in-situ argon(Ar) plasma strategy to fabricate a high-performance bifunctional hybrid catalyst of vacancy-rich CoFe2O4 synergized with defective graphene(r-CoFe2O4@DG). Reflected by the low voltage gap of 0.79 V in two half-reaction measurements, the striking capability to catalyze ORR/OER endows it excellent and durable performance in rechargeable Zn-air batteries, with a maximum power density of 155.2 mW/cm2 and robust stability(up to 60 h). Further experimental and theoretical studies validate its remarkable bifunctional energetics root from plasma-induced surface vacancy defects and interfacial charge polarization between DG and CoFe2O4. This work offers more opportunities for reliable clean energy systems by rational interfacial and defect engineering on catalyst design.  相似文献   

15.
Electrodes for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are required in energy conversion and storage technologies. An assembly strategy involves covalently grafting Co corrole 1 onto Fe3O4 nanoarrays grown on Ti mesh. The resulted electrode shows significantly improved activity and durability for OER and ORR in neutral media as compared to Fe3O4 alone and with directly adsorbed 1 . It also displays higher atom efficiency (at least two magnitudes larger turnover frequency) than reported electrodes. Using this electrode in a neutral Zn‐air battery, a small charge–discharge voltage gap of 1.19 V, large peak power density of 90.4 mW cm?2, and high rechargeable stability for >100 h are achieved, opening a promising avenue of molecular electrocatalysis in a metal–air battery. This work shows a molecule‐engineered electrode for electrocatalysis and demonstrates their potential applications in energy conversion and storage.  相似文献   

16.
Rational design of highly active and durable electrocatalysts for oxygen reactions is critical for rechargeable metal–air batteries. Herein, we report the design and development of composite electrocatalysts based on transition metal oxide nanocrystals embedded in a nitrogen‐doped, partially graphitized carbon framework. Benefiting from the unique pomegranate‐like architecture, the composite catalysts possess abundant active sites, strong synergetic coupling, enhanced electron transfer, and high efficiencies in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The Co3O4‐based composite electrocatalyst exhibited a high half‐wave potential of 0.842 V for ORR, and a low overpotential of only 450 mV at the current density of 10 mA cm?2 for OER. A single‐cell zinc–air battery was also fabricated with superior durability, holding great promise in the practical implementation of rechargeable metal–air batteries.  相似文献   

17.
氧还原反应是决定燃料电池、金属-空气电池等多种新型清洁能源存储与转化技术之性能与应用的关键反应. 铂及其合金是目前催化活性最好的氧还原反应催化剂,但其高昂的成本限制了规模化应用. 在小尺寸效应作用下,微纳米结构催化剂颗粒在电极制备与电化学反应过程中的团聚限制了催化剂本征催化活性的充分发挥. 本文基于喷雾热解技术,发展了一种基于内嵌钴/氮掺杂多孔碳三维石墨烯笼的高活性、抗团聚非贵金属氧还原反应催化剂. 此结构中,金属有机骨架化合物ZIF-67衍生的钴/氮掺杂多孔碳纳米结构是催化氧还原反应的活性中心,包覆其外的三维石墨烯笼不仅可在钴/氮掺杂碳纳米结构之间构建连续的三维载流子传导网络,且可高效抑制其在催化剂制备与电化学反应过程中的团聚与活性损失. 在碱性电解液中,此类非贵金属催化剂表现出可与铂基催化剂媲美的氧还原反应活性和优异的稳定性.  相似文献   

18.
Rational design of non‐noble materials as highly efficient, economical, and durable bifunctional catalysts for oxygen evolution and reduction reactions (OER/ORR) is currently a critical obstacle for rechargeable metal‐air batteries. A new route involving S was developed to achieve atomic dispersion of Fe‐Nx species on N and S co‐decorated hierarchical carbon layers, resulting in single‐atom bifunctional OER/ORR catalysts for the first time. The abundant atomically dispersed Fe‐Nx species are highly catalytically active, the hierarchical structure offers more opportunities for active sites, and the electrical conductivity is greatly improved. The obtained electrocatalyst exhibits higher limiting current density and a more positive half‐wave potential for ORR, as well as a lower overpotential for OER under alkaline conditions. Moreover, a rechargeable Zn–air battery device comprising this hybrid catalyst shows superior performance compared to Pt/C catalyst. This work will open a new avenue to design advanced bifunctional catalysts for reversible energy storage and conversion devices.  相似文献   

19.
Bifunctional electrocatalysts play a key role in the performance of rechargeable metal-air batteries. Herein, we report a hybrid catalyst, Ag1.8Mn8O16/rGO, self-assembled by Ag1.8Mn8O16 nanorods and reduced graphene oxide (rGO) nanosheets through electrostatic attraction. The hybrid catalyst exhibits a better oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity than commercial Pt/C in alkaline medium. When employed as an air-cathode catalyst in Zn-air cells, the hybrids enabled higher and more stable output voltage and better durability of the cells, benefitting from the improved electrode conductivity, larger surface area, and synergetic coupling as a result of its high structural integrity.  相似文献   

20.
To develop more ideal bifunctional heteroatom-doped carbon electrocatalysts toward the oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) for regenerative fuel cells and rechargeable metal–air batteries, herein, tobacco-derived N-containing ordered mesoporous carbon(N-OMC) electrocatalysts with different N species distributions are designed. Results indicate that the as-prepared N-OMC with more pyrrolic and pyridinic Ns exhibits much higher activities for the ORR and OER than N-OMC with more graphitic N in both acidic and alkaline media, suggesting that the increase of pyrrolic and pyridinic Ns favors the improvement of ORR and OER activities of the N-containing carbon catalysts, and showing a great potential for the designing of more effective, lower-cost ORR and OER bifunctional electrocatalysts for future regenerative fuel cells and rechargeable metal–air batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号