共查询到20条相似文献,搜索用时 71 毫秒
1.
当金属纳米粒子排列成有序阵列结构时,沿阵列平面内传播的衍射波与单粒子局域等离激元共振耦合,将导致等离激元共振急剧窄化,光谱宽度降至2 nm以下.与共振宽度在80 nm以上的常规单粒子共振相比,这种具有高品质因子的衍射耦合等离激元共振称为等离激元表面晶格共振.近年来,关于表面晶格共振研究已成为纳米光子学领域的研究热点,在发光、激光、光伏、通讯、存储以及传感等领域显示出巨大的应用前景.本文主要综述等离激元表面晶格共振的基本原理和性质,包括共振宽度、共振品质、电场增强,探讨了表面晶格共振的测试方法、影响因素以及纳米光学应用. 相似文献
2.
本文总结了近年来基于传播型表面等离激元(Propagafingsurfaceplasmons,PSPs)参与的表面增强拉曼(Surface—enhancedRamanscattering,SERS)技术和仪器方面的研究进展.内容主要包括3部分:(1)基于PSPs激励拉曼散射的装置和技术,包括在消逝场下激发PSPs共振增强拉曼的原理与装置、与表面等离子体共振(Surfaceplasmonresonance,SPR)传感技术的联用及新型结构的长程等离激元激励拉曼技术的研究进展;(2)通过引入局域型表面等离激元(Localizedsurfaceplasmons,LSPs)进一步增强SERS,进而实现PSPs-LSPs共同增强拉曼的超灵敏检测技术,包括在消逝场激发的PSPs基础上,增加纳米粒子实现的PSPs与LSPs共同增强拉曼的原理、装置,以及用该方法进行生物体系的免疫识别检测,此外,还在微纳周期结构上实现了PSPs与LSPs共同激励拉曼;(3)基于PSPs耦合的定向SERS技术,包括在消逝场结构和周期结构上实现SERS定向耦合发射以达到高激发和高收集效率的新技术. 相似文献
3.
《催化学报》2021,(10)
光催化固氮是最具潜力的人工光合过程之一,也是有望取代工业Haber-Bosch方法实现氨的绿色合成的清洁能源技术之一.由于氮气分子还原为氨需要较高的还原电位,导致大部分常规的半导体材料的导带能级不能满足固氮反应的热力学要求.同时,固氮光催化剂普遍存在光响应波段窄、表面催化活性低、太阳光向氨的转化效率低等问题.缺陷工程是目前制备高效固氮光催化剂的最有效的途径之一.在催化剂中引入缺陷可以带来两个方面的好处:(1)促进氮气分子在缺陷位点上的化学吸附和活化,从而降低反应能垒;(2)拓宽催化剂的太阳光响应波段,提高对太阳光的利用效率.等离激元效应来自于自由载流子的集体振荡,广泛存在于金属纳米结构中.尽管金属等离激元纳米材料在光催化中也有广泛的应用,可以通过等离激元增强的光吸收和散射、热载流子传输以及等离激元共振能量传递等机理提高太阳能转化效率,但其能量转化效率仍有限,多用于弥补半导体材料的弱点.研究发现,一些半导体纳米材料在可见光和近红外光范围表现出优异的等离激元共振吸收.相比等离激元金属纳米材料,这些半导体的等离激元共振效应的调控手段更加丰富.等离激元半导体材料普遍具有较高的缺陷浓度、非常宽的光响应波段,因而是理想的固氮光催化剂.本文利用具有还原性的气氛处理溶剂热法制备的SrMoO_4,通过引入高浓度的氧空位,实现了可调控的稳定的等离激元共振吸收.制备的SrMoO_4在可见光和近红外光范围具有强的等离激元吸收,其共振吸收峰的中心位置可从520调到815nm,显著拓宽了SrMoO_4的光响应波段,而样品的本征吸收边仍然位于310 nm.研究发现,氢气还原没有改变Sr的氧化态,而是将Mo~(6+)还原成Mo~(5+).紫外光电子能谱分析结果表明,高温氢气处理没有改变SrMoO_4样品的导带和价带能级.电子顺磁共振研究结果表明,氢气处理在SrMoO_4中形成了大量的氧空位.Mott-Schottky测试结果发现,氢气处理后的样品的载流子浓度高达~2.0×10~(20) cm~(-3).具有等离激元效应的SrMoO_4表现出优异的可见光固氮性能,相比不具有等离激元效应的Sr Mo O_4,在入射光波长大于420 nm的可见光照射下,在氢气气氛中处理10 min,3,6和8 h的SrMoO_4样品的氨的产率分别为41.2,36.3,24.5和20.8μg g~(-1)_(cat) h~(-1).其增强光催化活性主要来源于更宽的太阳光吸收波段、等离激元激发产生的热载流子和丰富的缺陷活性位点.一方面,SrMoO_4具有较高的导带能级,本征激发形成的导带电子能在热力学上将氮气分子还原为氨;另一方面,等离激元激发产生的热载流子具有较高的能量,能够越过固液界面的肖特基能垒,将吸附在催化剂表面缺陷处的氮气分子还原为氨.但是,尽管缺陷在光催化固氮中展现出多方面的优点,其在半导体中的浓度仍需进一步的优化. 相似文献
4.
目前, 单一的金属纳米粒子结构已经难以满足多学科交叉发展的需求. 因此, 将多种金属纳米粒子(如不同尺寸、 形状、 组分等)集成在同一基底表面, 能够充分发挥不同金属纳米粒子的性质和优势, 极具研究价值和应用价值. 本文介绍了多元化表面等离激元纳米粒子结构的构筑方法, 以及其在信息编码、 光电器件、 能源催化等领域的应用. 最后, 提出了当前在多元化结构制备中存在的挑战, 并展望了利用多元化结构实现性能提升的前景. 相似文献
5.
采用阳离子吸附法制备了氧化石墨烯负载纳米金(Au)催化剂(Au/GO), 通过调变Au的负载量(质量分数0.2%~2%), 实现了Au在10~21 nm粒径的可控制备. 室温下热红外测试显示0.2 W/cm2光照条件下, 随着金属负载量和粒径的增加, Au/GO光热温度可升高至110 ℃, 且光热转换效率高达88%. 研究发现, 以丁二烯的选择性催化加氢作为探针反应, 在0.2 W/cm2光照条件下, 丁二烯的转化率随Au负载量的增加先升高后降低, 丁烯选择性在90%以上; 当金负载量为0.5%(颗粒尺寸约15 nm), 光热转换温度为100 ℃时, 样品表现出较高的丁二烯转化率(99%)和丁烯选择性(90%), 且催化剂经过144 h稳定性测试无失活趋势. 与同等条件下的热催化反应相比, 光-热驱动的Au/GO的催化活性提高了5倍. 原位X射线光电子能谱测试分析表明, Au/GO催化性能的提升主要来源于等离子体光转热过程中激发纳米金表面产生了大量的Au δ+活性位点. 相似文献
6.
借鉴电镀工业中过电流“烧焦”现象, 在过电流沉积条件下一步制备出等离激元黑金. 扫描电子显微镜、 透射电子显微镜、 X射线衍射和紫外-可见-近红外吸收光谱等表征结果显示, 该黑金是具有三维分形结构的多晶纳米金, 可以在 400~1800 nm宽波段范围内吸收光. 电催化甲醇结果显示, 黑金在宽波长光照下可以将甲醇的电催化效率提高 15.2%, 其主要贡献来源于等离激元生成的热电子, 而一小部分来自环境热. 在不同的单色光照条件下, 黑金的催化效率差别不大, 表明其对光能的利用没有明显的波长选择性. 相似文献
7.
具有显著表面等离激元共振效应的贵金属纳米粒子因其独特的光电学性质在许多领域表现出了潜在的应用价值。结合纳米压印技术与自组装技术发展了一种高效的多元化纳米粒子结构的制备方法,并制备了一种由不同尺寸金纳米粒子构成的周期性表面等离激元纳米粒子结构。实验结果证明此种方法在大批量制备和结构多元化的控制方面具有独特的优势。利用不同的表面等离激元纳米粒子结构对不同荧光分子增强效果的差异,设计了2种具有明显明暗差异的荧光条码,展示了多重的荧光增强响应。 相似文献
8.
转化CO2为有机组分是缓解全球变暖和保障持续能源供给的有效方法之一.采用简易的离子交换结合水合肼还原法制备了一系列不同晶相Ag2WO4载银(Ag/Ag2WO4)的等离子共振光催化剂,并用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜-能量色散X射线光谱(SEM-EDS)、紫外-可见(UV-Vis)吸收光谱和比表面积测试对催化剂进行了表征.较之Ag2WO4, Ag/Ag2WO4在可见光催化还原CO2生成CH4时显示了明显提高的量子产率(QY)、能量投入产出比(EROEI)、转换数(TON),就Ag/α-Ag2WO4, Ag/β-Ag2WO4和Ag/γ-Ag2WO4而言,最佳催化剂为Ag/β-Ag2WO4,其实际最佳Ag:Ag2WO4摩尔比为4:96,该催化剂还原CO2为CH4的QY、EROEI、TON和拟一级反应速率常数分别为0.145%、0.067%、9.61和1.96×10-6 min-1.此外,制备的等离子共振Ag/Ag2WO4光催化剂在可见光辐照下进行循环反应仍能保持稳定性.局域表面等离子共振效应是强化Ag/Ag2WO4光催化剂活性和稳定性的主要原因. 相似文献
9.
对氨基苯硫酚(PATP)是表面增强拉曼光谱(SERS)研究中最重要的探针分子之一. PATP吸附体系具有非常特征且异常强的SERS信号, 但人们对其SERS信号的理解仍存在较大争议. 本文结合文献, 总结了我们为了理解PATP分子异常的SERS光谱所开展的系统的理论和实验工作. 首先介绍PATP的SERS增强机理方面开展的理论工作, 研究表明PATP分子的异常SERS信号不是来自PATP分子本身, 而是来自其表面催化偶联反应产物二巯基偶氮苯(DMAB). 通过实验和DMAB合成两个方面, 验证了DMAB是异常SERS信号的根源. 其次总结了各种实验条件对PATP转化为DMAB的影响, 并从实验和理论两个角度探讨PATP的表面催化偶联反应机理. 最后, 通过对PATP体系的SERS和等离激元增强化学反应的总结, 展望表面等离激元增强化学反应的未来发展方向. 相似文献
10.
金属纳米晶体具有独特的表面等离激元特性,为太阳能转换成化学能提供了新的机遇。本文以课题组近期的研究工作为例,阐述在催化有机加氢反应中表面等离激元效应所产生的多种物理过程的作用机制。该系列工作实现了太阳能向化学能的有效转换,为太阳能替代传统有机化工中的热催化提供了可能性,对等离激元催化材料的设计具有一定的指导意义。 相似文献
11.
利用太阳能光催化还原CO2和H2O到燃料和化学品是一条极具吸引力但又充满挑战性的转化途径.迄今为止,只有非常有限的光催化剂已经被报道可以在可见光照射下光催化还原CO2.局部表面等离子体共振(LSPR)现象可以被用作一种有效的开发可见光催化剂的策略.贵金属Au,Ag,Pt等的LSPR现象已经被较为广泛的研究,并应用于光催化、光热、气敏等多种领域.而低价态金属自掺杂的金属氧化物,如MoO3-x和WO3-x,也被证明具有LSPR现象,可用于开发更加廉价的可见光催化剂.本文通过简单的溶剂热法成功合成了低价态Mo自掺杂的MoO3-x纳米片催化剂,并在合成过程中原位加入TiO2纳米颗粒(TiO2-NP)和TiO2纳米棒(TiO2-NT),构建了MoO3-x-TiO2纳米复合物.电镜表征显示,MoO3-x-TiO 相似文献
12.
The intense colors of noble metal nanoparticles have inspired artists and fascinated scientists for hundreds of years. In this review, we describe refractive index sensing platforms based on the tunability of the localized surface plasmon resonance (LSPR) of arrays of silver nanoparticles and of single nanoparticles. Specifically, the color associated with single nanoparticles and surface-confined nanoparticle arrays will be shown to be tunable and useful as platforms for chemical and biological sensing. Finally, the LSPR nanosensor will be compared to traditional, flat surface, propagating surface plasmon resonance sensors. 相似文献
13.
Kreuzer MP Quidant R Salvador JP Marco MP Badenes G 《Analytical and bioanalytical chemistry》2008,391(5):1813-1820
This work reports the systematic preparation of biosensors through the use of functionalized glass substrates, noble metal
gold colloid, and measurement by localized surface plasmon resonance (LSPR). Glass substrate was modified through chemical
silanization, and the density of gold colloid was carefully controlled by optimizing the conditions of silanization through
the use of mixed silanes and selective mixing procedures. At this point, samples were exposed to bioreagents and changes in
the shallow dielectric constant around the particles were observed by dark-field spectroscopy. Biological binding of high
affinity systems (biotin/streptavidin and antigen/antibody) was subsequently investigated by optimizing coating layers, receptor
concentration profiling, and finally quantitative determination of the analyte of interest, which in this case was a small
organic molecule—the widely used, synthetic anabolic steroid called stanozolol. For this system, high specificity was achieved
(>97%) through extensive nonspecific binding tests, with a sensitivity measurable to a level below the minimum required performance
level (MRPL) as determined by standard chromatographic methods. Analytical best-fit parameters of Hillslope and regression
coefficient are also commented on for the final LSPR biosensor. The LSPR biosensor showed good reproducibility (<5% RSD) and
allowed for rapid preparation of calibration curves and determination of the analyte (measurement time of each sample ca.
2 min). As an alternative method for quantitative steroidal analysis, this approach significantly simplifies the detection
setup while reducing the cost of analysis. In addition the system maintains comparable sensitivity to standard surface plasmon
resonance methods and offers great potential for miniaturization and development of multiplexed devices.
Figure Schematic of sensor configuration indicating both min and max controls and associatedexample localized resonance curves
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
14.
Huang H Huang S Yuan S Qu C Chen Y Xu Z Liao B Zeng Y Chu PK 《Analytica chimica acta》2011,(2):242-247
An enhanced sensitive biosensor has been developed to detect biological targets by tailoring the localized surface plasmon resonance property of core–shell gold nanorods. In this new concept, a shell layer is produced on gold nanorods by generating a layer of chalcogenide on the gold nanorod surface after attachment of the recognition reagent, namely, goat IgG and antigen of schistosomiasis japonica. The bioactivity of these attached biomolecules is retained and the sensitivity of this biosensor is thus enhanced significantly. The plasmonic properties of the gold nanorods attached with the biomolecules can be adjusted and the plasmon resonance wavelength can be red-shifted up to several hundred nanometers in the visible or near infrared (NIR) region, which is extremely important to biosensing applications. This leads to a lager red-shift in the localized surface plasmon resonance absorption compared to the original gold nanorod-based sensor and hence offers greatly enhanced sensitivity in the detection of schistosomiasis japonica. The human serum infected with schistosomiasis japonica diluted to 1:50,000 (volume ratio, serum/buffer solution) can be detected readily. The technique offers enhanced sensitivity and can be easily extended to other sensing applications based on not only immuno-recognition but also other types of specific reactions. 相似文献
15.
16.
In this paper, the development of a localized surface plasmon resonance (LSPR)-based optical enzyme biosensor using stimuli-responsive hydrogel-silver nanoparticles composite is described. This optical enzyme biosensor was constructed by immobilizing glucose oxidase (GOx) into the stimuli-responsive hydrogel. When a sample solution such as glucose was applied to the surface of this optical enzyme biosensor, the interparticle distances of the silver nanoparticles present in the stimuli-responsive hydrogel were increased, and thus the absorbance strength of the LSPR was decreased. Furthermore, hydrogen peroxide, which was produced by the enzymatic reaction, induced the degradation of highly clustered silver nanoparticles by the decomposition of hydrogen peroxide. Hence, a drastic LSPR absorbance change, which depends on the glucose concentrations, could be observed. On the basis of the abovementioned mechanism, the characterization of the LSPR-based optical enzyme biosensor was carried out. It was found that the LSPR-based optical enzyme biosensor could be used to specifically determine glucose concentrations. Furthermore, the detection limit of this biosensor was 10 pM. Therefore, this LSPR-based optical enzyme biosensor has the potential to be applied in cost-effective, highly simplified, and highly sensitive test kits for medical applications. 相似文献
17.
Tatsuro Endo Daisuke Ikeda Yasuko Yanagida Takeshi Hatsuzawa 《Analytica chimica acta》2010,661(2):200-213
LSPR from nanostructured noble metals such as gold and silver offers great potential for biosensing applications. In this study, a core-shell structured nanoparticle layer substrate was fabricated and the localized surface plasmon resonance (LSPR) optical characteristics were investigated for DNA in aqueous conditions. Factors such as DNA length dependence, concentration dependence, and the monitoring of DNA aspects (ssDNA or dsDNA) were measured. Different lengths and concentrations of DNA solutions were introduced onto the surface of the substrate and the changes in the LSPR optical characteristics were measured. In addition, to monitor the changes in LSPR optical characteristics for different DNA aspects, a DNA solutions denatured by means of heat or alkali were introduced onto the surface, after which optical characterization of the core-shell structured nanoparticle substrate was carried out. With this core-shell structured nanoparticle layer for the excitation of LSPR, the dependence upon specific DNA conditions (length, concentration, and aspect) could be monitored. In particular, the core-shell structured nanoparticle layer substrate could detect DNA of length 100-5000 bp and 400-bp DNA at a concentration of 4.08 ng mL−1 (1 × 107 DNA molecules mL−1). Furthermore, the changes in LSPR optical characteristics with DNA aspect could be monitored. Thus, LSPR-based optical detection using a core-shell structured nanoparticle layer substrate can be used to determine the kinetics of biomolecular interactions in a wide range of practical applications such as medicine, drug delivery, and food control. 相似文献
18.
Using an enhanced surface plasmon resonance (SPR) immunosensor, we have determined the concentration of human complement factor 4 (C4). Antibody protein was concentrated into a carboxymethyldextran-modified gold surface by electrostatic attraction force and a simultaneous covalent immobilization of antibody based on amine coupling reaction took place. The sandwich method was applied to enhance the response signal and the specificity of antigen binding assay. The antibody immobilized surface had good response to C4 in the range of 0.02-20 μg/ml by this enhanced immunoassay. The regeneration effect by pH 2 glycine-HCl buffer was also investigated. The same antibody immobilized surface could be used more than 80 cycles of C4 binding and regeneration. In addition, the ability to determinate C4 directly from serum sample without any purification was investigated. The sensitivity, specificity and reproducibility of the enhanced immunoassay are satisfactory. The results clearly demonstrate the advantages of the enhanced SPR technique for C4 immunoassay. 相似文献
19.
Narrow-band BiOI photocatalysts usually suffer from low photocatalysis efficiency under visible light exposure because of rapid charge recombination. In this work, to overcome this deficiency of photosensitive BiOI, oxygen vacancies, Bi particles, and Bi2O2CO3 were co-induced in BiOI via a facile in situ assembly method at room temperature using NaBH4 as the reducing agent. In the synthesized ternary Bi/BiOI/(BiO)2CO3, the oxygen vacancies, dual heterojunctions (i.e., Bi/BiOI and BiOI/(BiO)2CO3), and surface plasmon resonance effect of the Bi particles contributed to efficient electron-hole separation and an increase in charge carrier concentration, thus boosting the overall visible light photocatalysis efficiency. The as-prepared catalysts were applied for the removal of NO in concentrations of parts per billion from air in continuous air flow under visible light illumination. Bi/BiOI/(BiO)2CO3 exhibited a highly enhanced NO removal ratio of 50.7%, much higher than that of the pristine BiOI (1.2%). Density functional theory calculations and experimental results revealed that the Bi/BiOI/(BiO)2CO3 composites promoted the production of reactive oxygen species for photocatalytic NO oxidation. Thus, this work provides a new strategy to modify narrow-band semiconductors and explore other bismuth-containing heterostructured visible-light-driven photocatalysts. 相似文献
20.
Mohammad Kamal Hossain Yasutaka Kitahama Genin Gary Huang Xiaoxia Han Yukihiro Ozaki 《Analytical and bioanalytical chemistry》2009,394(7):1747-1760
Surface-enhanced Raman scattering (SERS) enhancement and the reproducibility of the SERS signal strongly reflect the quality
and nature of the SERS substrates because of diverse localized surface plasmon resonance (LSPR) excitations excited at interstitials
or sharp edges. LSPR excitations are the most important ingredients for achieving huge enhancements in the SERS process. In
this report, we introduce several gold and silver nanoparticle-based SERS-active substrates developed solely by us and use
these substrates to investigate the influence of LSPR excitations on SERS. SERS-active gold substrates were fabricated by
immobilizing colloidal gold nanoparticles on glass slides without using any surfactants or electrolytes, whereas most of the
SERS-active substrates that use colloidal gold/silver nanoparticles are not free of surfactant. Isolated aggregates, chain-like
elongated aggregates and two-dimensional (2D) nanostructures were found to consist mostly of monolayers rather than agglomerations.
With reference to correlated LSPR and SERS, combined experiments were carried out on a single platform at the same spatial
position. The isolated aggregates mostly show a broadened and shifted SPR peak, whereas a weak blue-shifted peak is observed
near 430 nm in addition to broadened peaks centered at 635 and 720 nm in the red spectral region in the chain-like elongated
aggregates. In the case of 2D nanostructures, several SPR peaks are observed in diverse frequency regions. The characteristics
of LSPR and SERS for the same gold nanoaggregates lead to a good correlation between SPR and SERS images. The elongated gold
nanostructures show a higher enhancement of the Raman signal than the the isolated and 2D samples. In the case of SERS-active
silver substrates for protein detection, a new approach has been adopted, in contrast to the conventional fabrication method.
Colloidal silver nanoparticles are immobilized on the protein functionalized glass slides, and further SERS measurements are
carried out based on LSPR excitations. A new strategy for the detection of biomolecules, particularly glutathione, under aqueous
conditions is proposed. Finally, supramolecular J-aggregates of ionic dyes incorporated with silver colloidal aggregates are
characterized by SERS measurements and correlated to finite-difference time-domain analysis with reference to LSPR excitations.
Figure SPR and SERS images for isolated, elongated and two-dimensional gold nanostructures 相似文献