首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
通过精细的纳米结构和化学组成控制,开发高效的全解水纳米光催化剂是一项具有挑战性的任务.此外,在光催化水氧化的半反应过程中,抑制纳米材料严重光腐蚀也是一项艰巨的任务,需要有效地提高纳米材料光生空穴转移的动力学.为此,本文通过可控的化学反应,设计制备了具有空间催化活性位点分布的Co-MnO_2@CdS/CoS中空立方体顺序材料,并用作可见光催化全解水催化剂.采用MOFs作为自模板,经过连续的阴离子交换和阳离子交换反应,将Co掺杂的氧化助催化剂(纳米片Co-MnO_2)和还原助催化剂(纳米粒子Co S)同时整合到中空的立方体Cd S纳米材料中,使得超薄的二维纳米片Co-MnO_2与立方体的内部界面均匀接触,能够有效地提高空穴的转移效率.同时,CoS纳米粒子均匀分散在CdS纳米材料的壁上,能够有效地转移光生电子,从而提高光生电子-空穴对的分离效率.实验测试表明,Co-MnO_2@CdS/CoS中空立方体顺序材料可以为表面氧化-还原反应提供丰富的反应活性位点,同时有助于提高Cd S纳米材料光生电子-空穴对的分离和迁移效率.特别是分散在Cd S中空立方体壁面上的Co S纳米颗粒被确定为加速氢气生成的还原型助催化剂,能够促进水中氢离子生成氢气;而附着在Cd S中空立方体内壁上的Co-MnO_2纳米片被确定为促进氧演化动力学的氧化型助催化剂,能够促进水生成氧气.因此,在本实验中,得益于理想的纳米结构和化学组成方面的优势,Co-MnO_2@CdS/CoS纳米立方体显示了高效的光催化全解水性能:在没有贵金属作为助催化剂存在时,它显示了很好的整体光催化水分解效率(735.4(H_2)和361.1(O_2)μmol h~(-1) g~(-1)),超过了大多数文献报道的Cd S基催化剂光解水效率.此外,以420 nm单波长光为入射光,进行了量子效率(AQE)测试,最优的Co-MnO_2@CdS/CoS纳米材料的表观AQE达1.32%.本文合成的顺序材料为构筑具有活性位点空间分布的高效全解水催化剂提供了新的思路.  相似文献   

2.
开发低成本的半导体光催化剂以实现可见光下高效、持久的光催化分解水产氢是一个非常具有挑战性的课题.近年来,具有高产氢活性的CdS光催化剂引起了人们的研究兴趣.但是光生电子-空穴对快速复合、反应活性位点不足以及严重的光腐蚀等问题,严重地制约了CdS在光催化领域的实际应用.构建S型异质结和负载助催化剂被认为是促进光生电子空穴分离和加速产氢动力学的有效策略.本文通过在低成本的WO3和Ti3C2MXene(MX)纳米片上生长CdS纳米片,设计并构建了具有二维耦合界面的2D/2D/2D层状异质结光催化剂,以实现高效的可见光光催化分解水产氢.首先通过水热煅烧和刻蚀的方法分别制备了WO3和MX纳米片,然后以乙酸镉和硫脲为原料在乙二胺溶剂中通过水热法合成了MX-CdS/WO3层状异质结光催化剂.在可见光下,以乳酸为牺牲剂测试了光催化剂的产氢活性且经过4次连续的循环反应,MX-CdS/WO3体系展现出良好的活性及稳定性.在可见光的照射下,MX-CdS/WO3层状异质结光催化剂最高的可见光光催化分解水产氢速率达到了27.5 mmol/g/h,是纯CdS纳米片的11倍.与此同时,在450 nm的光照下,表观量子效率达到了12.0%.为了深入探讨其高效产氢机理,通过X射线衍射、X射线光电子能谱、原子力显微镜、透射电镜、高分辨电子显微镜等对MX-CdS/WO3体系的组成和结构进行分析.结果表明,实验成功地合成了CdS,WO3和MX三种纳米片及其复合材料.通过紫外-可见漫反射光谱研究了样品材料的光吸收能力.通过表面光电压、稳态及瞬态荧光光谱等研究了材料的电荷载流子复合和转移行为,发现MX-CdS/WO3的光生电子空穴对相比与纯CdS或者二元复合材料具有更高的分离效率.UPS和ESR等表征结果说明,材料内部电场的方向和在光照条件下光生载流子的迁移方向,从而证实了S型异质结和欧姆结的成功构建.综上,在MX-CdS/WO3光催化剂体系中,S型异质结形成较强的界面电场能够有效促进CdS纳米片与WO3纳米片之间光生电子-空穴对的分离.同时,二维Ti3C2MXene纳米片作为辅助催化剂,通过与CdS/WO3纳米片构建欧姆结,进而提供大量的电子转移途径和更多的析氢反应活性位点,使得CdS光催化剂的光催化活性和稳定性得到了很大的提升.通过构建S型内建电场、欧姆结和2D/2D界面可以协同提高CdS纳米片的光催化性能,从而加速光生电子在异质结中的分离和利用.本文所采用基于S型异质结与欧姆结基助催化剂之间的耦合策略可以作为一种通用策略扩展到其它传统半导体光催化剂的改性中,从而推进高效光催化产氢材料的有效合成.  相似文献   

3.
半导体光生电荷分离是光催化过程中的关键步骤之一,其效率极大地影响了最终光催化性能.将TiO2纳米片与石墨烯复合,能够促进TiO2中光生电子和空穴的分离,从而提高其光催化活性.为了研究光生电荷的分离对TiO2/石墨烯复合材料光催化性能的影响,通过调控TiO2纳米片的尺寸来调节TiO2/石墨烯复合材料中光生电荷分离的能力,然后研究其对TiO2/石墨烯复合材料光催化性能的影响.合成了一系列不同厚度的TiO2纳米片,将其与石墨烯复合,并通过光沉积负载Pt纳米颗粒作为助催化剂,用于光催化产氢.实验结果显示,随着TiO2纳米片厚度减小,其与石墨烯形成的复合结构的光催化性能显著提高.这主要是由于TiO2纳米片厚度减小时,光生电子沿厚度方向穿过TiO2纳米片迁移到石墨烯的距离缩短,从而减少了光生电子在迁移过程中与空穴的复合;同时TiO2纳米片厚度减小使其比表面积增大,使得TiO2/石墨烯界面面积增大,从而使石墨烯更好地分离出TiO2中的光生电子,有更多的光生电子到达石墨烯参与催化反应,提高TiO2/石墨烯复合材料的光催化性能.此研究表明通过控制TiO2纳米片的尺寸来调控TiO2/石墨烯复合材料中光生电子和空穴的分离,是显著提高其光催化性能的有效途径.  相似文献   

4.
研究了在不同的半导体体系(TiO2, CdS和C3N4)中, Ni2P光催化甲酸(HCOOH)分解制氢的助催化效应. 作为助催化剂, Ni2P与3种半导体形成的复合光催化剂均表现出良好的HCOOH分解制氢活性. Ni2P/TiO2, Ni2P/CdS, Ni2P/C3N4 3种光催化剂最优的产氢活性分别为41.69, 22.45和47.67 μmol·mg-1·h-1, 分别为纯TiO2, CdS和C3N4的3.8倍、 10倍和210倍, 表明Ni2P在光催化HCOOH分解制氢体系中具有普适性. 研究了光催化HCOOH分解制氢的机理, Ni2P的加入使光生电子从半导体转移至Ni2P, 提高了光生电子-空穴对的分离效率; Ni2P还促进了活性物种·OH的生成, 提高了光催化HCOOH分解的产氢速率.  相似文献   

5.
通过半导体催化剂利用太阳能分解水制氢被认为是解决人类面临的环境问题和能源危机的有效途径.在众多的半导体光催化剂中,TiO2由于其良好的光化学稳定性、无毒性、丰富的形貌以及低廉的价格,在光催化制氢领域备受关注.然而TiO2的内在缺陷,如较宽的带隙、较窄的光响应范围,光生电子空穴对的快速复合,极大限制了其太阳能制氢效率.构建异质结结构被认为是解决以上问题的一个有效方法,通过将TiO2与另一个半导体复合可以提升催化剂对太阳光的吸收范围,也可降低光生电子空穴对的复合速率.但构建一个成功的异质结结构不仅要满足上述的要求,还需要保留异质结催化剂体系中光生电子和空穴的氧化还原能力.研究表明,S型异质结是将两个具有合适能带结构的半导体进行耦合,由于费米能级的差异,两个半导体间将发生电子转移,从而引起能带弯曲并形成内建电场.光照条件下,具有较弱还原能力的光生电子在内建电场和能带弯曲的作用下与较弱氧化能力的光生空穴复合,实现异质结催化剂体系中各个半导体内部光生载流子有效分离的目标,同时保留了异质结催化剂体系中较强氧化能力和较强还原能力的光生电子和空穴,进而实现光催化活性的提高.本文采用水热合成方法,将具有更强还原能力和可见光响应特性的半导体(ZnIn2S4)原位生长在TiO2纳米纤维表面,构建了1D/2DTiO2/ZnIn2S4S型异质结光催化剂.最优比例的TiO2/ZnIn2S4复合材料表现出优越的光催化制氢活性(6.03mmol/h/g),分别是纯TiO2和纯ZnIn2S4制氢活性的3.7倍和2倍.TiO2/ZnIn2S4复合材料光催化活性的提高可以归因于紧密的异质结界面、光生载流子的有效分离、丰富的反应活性位点以及增强的光吸收能力.通过原位XPS和DFT计算研究了异质结内部光生电子的转移机制.结果表明,在光照条件下电子由TiO2向ZnIn2S4迁移,遵循了S型异质结内部电子的转移机制,实现了TiO2和ZnIn2S4内部光生载流子的有效分离,同时保留了具有较强还原能力的ZnIn2S4价带电子和较强氧化能力的TiO2导带空穴,从而显著提升光催化制氢效率.综上,本文制备的TiO2/ZnIn2S4S型异质结光催化剂很好地克服了TiO2在光催化制氢领域所面临的诸多障碍,为设计和制备高效异质结光催化剂提供了新的思路.  相似文献   

6.
光催化水分解是一种经济而且可持续的利用太阳能来制备洁净能源氢气的方式,因此寻找和开发高效稳定的光催化剂已成为光催化产氢领域的研究热点.CdS因其具有高效、廉价、较负的导带位置等优点而引起人们的关注.然而,由于CdS镉本身光生电子/空穴对易复合,以及存在光腐蚀等不足,限制了其实际利用.为了提高CdS的光催化水分解产氢性质,人们开发了构建异质结和负载助催化剂等策略.近年来,ZnO,g-C_3N_4,TiO_2等半导体已被证实可以与CdS一起形成Ⅱ型异质结来促进光生电子和空穴的分离,进而提升光催化产氢性质.此外,传统的type Ⅰ型CdS/ZnS异质结也被证实能提高光催化产氢速率.研究表明,ZnS一方面能够钝化CdS表面态,另一方面ZnS半导体中存在缺陷能(VZn,IS),有利于转移CdS价带的空穴,最终大幅度提高了整个体系的光催化活性.在适用于CdS的各种助催化剂中,由于常用的Pt,Pd和Ru等贵金属的高成本严重限制了它们的实际应用,所以近年来基于过渡金属的各种非贵金属助催化剂(包括MoS_2,Ni_2P,FeP,Ni_3N,NiS,Ni(OH)_2等)得到了广泛的研究.我们采用原位化学沉积法将无定型的NiS助催化剂修饰在CdS/ZnS异质结表面,开发出廉价高效的NiS-CdS/ZnS三元产氢光催化体系.在该三元体系中,NiS和ZnS分别用于促进CdS导带上光生电子和价带的光生空穴的分离及利用,从而使得高能的CdS的光生电子转移到NiS表面并应用于光催化产氢,而高能的CdS的光生空穴被应用于氧化牺牲剂Na2S和Na_2SO_3,最终实现了整个体系的高效光催化产氢活性及稳定性.我们首先利用水热合成法得到大量的CdS纳米棒,然后使用化学浴沉积法在CdS表面沉积一定量的ZnS壳层,制备出CdS/ZnS异质结.光照前,采用原位化学沉积法将NiS颗粒负载在CdS/ZnS表面.光催化产氢的性能测试表明,当初始加入镍盐(20 mmol/L)量为100μL时,所得样品N2(NiS-CdS/ZnS)产氢效率最高(574μmol·h~(–1)),分别是CdS/NiS,CdS/ZnS和CdS的16.2,5.6和38倍.复合材料的表观量子效率高达43.2%.由此可见,NiS助催化剂和CdS/ZnS异质结存在协同效应,实现了三元体系的高效的光催化产氢性能.瞬态光电流测试结果表明,ZnS和NiS的加入能有效地促进光生电子/空穴的分离和利用.X射线衍射结果表明,CdS以六方相的形式存在,负载ZnS和NiS之后没有明显变化.高分辨透射电子显微镜照片和元素分布证实了NiS-CdS/ZnS复合材料中ZnS和NiS富集在纳米棒表层,其中NiS没有明显晶格条纹.紫外-可见漫反射结果表明,NiS和ZnS的负载后,复合材料的吸收边和纯相的CdS相近,而加入NiS助催化剂使得复合催化剂的颜色变黑,进而增加了可见光的吸收.  相似文献   

7.
马松  徐兴民  谢君  李鑫 《催化学报》2017,(12):1970-1980
光催化产氢技术是目前解决能源和环境问题的最有潜力的方法之一,因此制备安全高效的光催化剂已成为目前的研究热点.在目前研究的各种光催化剂中,CdS光催化剂因为具有较窄的带隙(2.4 eV)和合适的导带位置,所以在可见光催化产氢领域受到广泛关注.然而,光生电子/空穴对易复合和光腐蚀作用极大地限制了CdS光催化剂的放大应用.因此,人们采用众多改性策略以提高CdS光催化剂的可见光产氢活性,其中构建CdS纳米结构和负载助催化剂被认为是最有效的方式.构建CdS纳米结构既可以缩短载流子的迁移路径,也可以减少CdS晶体中的缺陷.很多不同纳米结构的CdS光催化剂已经被开发,例如纳米线、纳米颗粒和纳米棒等.因为制备过程极为复杂繁琐,所以CdS纳米片的研究鲜见报道.本文采用乙酸鎘和硫脲为原材料,通过简单的溶剂热法合成了CdS纳米片.在CdS的各类助催化剂中,由于常用的Pt,Ag和Au等贵金属的高成本和低储量等问题严重限制了它们的实际应用,所以近年来众多非贵金属助催化剂(例如MoS_2,WS2,NiS,NiO和WC等)得到了广泛关注.由于非贵金属助催化剂存在弱电导率和低功函数等问题,影响了对光生电子的收集和利用.纳米碳材料具有极高的电导率、强可见光吸收、有效的载流子分离和较多的反应位点等优点,因此组合纳米碳材料和非贵金属助催化剂被认为是一种有效的解决方案.本文首次采用炭黑和NiS_2作为双助催化剂改性CdS纳米片,通过简单的溶剂热/沉淀两步法成功合成了廉价高效的CdS/CB/NiS_2三元光催化体系.光催化产氢性能测试表明,CdS-0.5%CB-1%NiS_2展现出最高的光催化效率(166.7μmol h~(-1)),分别是CdS NSs和CdS-1.0%NiS_2的5.16和1.87倍.X射线衍射、高分辨电子显微镜和X射线光电子能谱结果证实了CdS催化剂的片状结构,且炭黑和NiS_2成功负载在CdS纳米片表面.紫外-可见漫反射结果表明,随着炭黑和NiS_2的负载,复合催化剂的吸收边缘产生明显的红移,且对可见光的吸收增强.荧光光谱、阻抗和瞬态光电流曲线测试结果证明,炭黑和NiS_2的加入可以有效地促进光生电子/空穴对分离.极化曲线结果表明,加入炭黑和NiS_2可以降低CdS的产氢过电势,因此加速表面产氢动力学.总之,炭黑和NiS_2之间显著的协同效应极大地提高了可见光吸收,促进光生电子/空穴对分离,加速表面产氢动力学,最终得到了三元光催化体系极高的光催化产氢活性.  相似文献   

8.
李乃旭  黄美优  周建成  刘茂昌  敬登伟 《催化学报》2021,42(5):781-794,中插9-中插14
光催化CO2还原制备太阳燃料被广泛关注并逐渐形成研究热点,该过程利用可再生清洁能源太阳能,在低温低压的温和条件下驱动CO2还原制备CO、CH4、CH3OH等燃料气体或者高附加值的碳氢化合物.半导体光催化剂能够将清洁的太阳能有效地转化为化学能,其中,g-C3N4由于其成本低、毒性低、稳定性高和带隙窄等优点,被广泛应用于光催化领域.然而,纯g-C3N4具有光利用效率低和光生电子-空穴复合率高的缺点,导致光催化活性相对较低.因此,需要对g-C3N4进行修饰改性来提高其光催化性能.一方面,MgO具有强大的CO2吸附能力,可用于修饰半导体以提高光催化还原CO2的反应活性.另一方面,助催化剂尤其是贵金属,不仅能够捕获电子以提高光生电子-空穴对的分离效率,而且还能提供反应的活性位点.本文通过沉淀和煅烧法制备了不同复合量的MgO-g-C3N4催化剂,同时负载贵金属Au作为助催化剂,用于光催化CO2和H2O反应,考察MgO含量和不同贵金属助催化剂对光催化活性的影响.发现Au和3%MgO共改性的g-C3N4光催化剂上表现出最佳的光催化性能,3 h后CO,CH4,CH3OH和CH3CHO的产量分别高达423.9、83.2、47.2和130.4μmol/g.本文分别研究了MgO和贵金属Au作为助催化剂对光催化行为的影响.XPS结果表明,Au/MgO-g-C3N4纳米片中形成了Mg–N键;UV-vis漫反射光谱表明Au/MgO-g-C3N4复合催化剂能够大大地增强紫外和可见光的吸收,且Au纳米颗粒具有表示等离子体共振(SPR)效应;PL光谱、TRPL光谱和光电化学测试都显示了MgO和Au的加入可以有效地提高光生电荷载流子的分离效率,这是由于Mg–N键的存在以及Au纳米颗粒对电子的捕获作用.CO2吸附曲线证明了MgO的存在能够增强对CO2的吸附;CO2-TPD测试则表明CO2的有效吸附主要发生在MgO和Au纳米颗粒的界面处,而该界面正是光生电子和活化吸附后的CO2反应的活性位点.值得注意的是,在Au/3%MgO-g-C3N4三元催化剂上CO的产量是纯g-C3N4的29倍.实验和表征结果均表明,MgO和Au的共修饰显著提高了纯g-C3N4的光催化活性,这是由于三元光催化剂各组分之间的协同作用所致.助催化剂MgO可以激活CO2(吸附在MgO和Au颗粒之间的界面),并且MgO-g-C3N4纳米片中形成的Mg-N键在电荷转移中起着重要作用.同时,Au颗粒修饰的MgO-g-C3N4可以通过SPR效应增加可见光的吸收,并进一步降低H2O对CO2的光还原活化能;且Au纳米颗粒能够捕获电子,从而促进光生载流子的分离.本研究通过MgO和Au纳米颗粒共修饰的方法改性传统的光催化剂,具有光催化还原CO2的应用前景.  相似文献   

9.
CdS修饰TiO2纳米带制备及光催化降解有毒有机污染物   总被引:2,自引:0,他引:2  
以硫酸钛为原料,在210℃低温下,水热制备TiO2纳米带.通过沉淀法用CdS修饰TiO2纳米带表面,制得TiO2@CdS复合光催化剂,采用XRD、TEM和反射紫外对其结构及光化学特性进行初步表征.以可见光(λ≥450 nm)光催化降解罗丹明B(Rhodamine B,RhB)、水杨酸(Salicylic Acid,SA)及2,4-二氯苯酚(2,4-Dichlorophenol,2,4-DCP)为探针反应,研究反应温度、介质和负载CdS对TiO2@CdS结构性能的影响.结果表明,所制备的TiO2纳米带分散性好.复合粉末由锐钛矿相TiO2和立方相CdS组成.常温25℃中性介质中用CdS修饰的TiO2的活性,在可见光照射下,为单纯TiO2纳米带的29倍.同时,TiO2也促进了CdS可见光光催化活性的提高.通过跟踪降解体系紫外-可见光谱(UV-vis)、红外光谱(FTIR)和总有机碳(TOC)测定,结果发现TiO2@CdS/vis体系在pH 7.0时,对SA的降解率较TiO2纳米带有显著地提高,反应15 h和21 h后,RhB和2,4-DCP的矿化率分别可达到47.8%和30.8%.  相似文献   

10.
利用溶胶-凝胶法制备了不同比率的CdS掺杂TiO2复合纳米颗粒催化剂,并用其进行了紫外光、日光灯和太阳光全波长光催化去除水中氨氮和其它形式无机氮的对比实验研究.考察了添加催化剂的量、CdS复合比率、有氧化态氮亚硝酸根或硝酸根与氨氮共存时光催化脱氮的耦合效果、外加光源等对脱除氨氮效率的影响,并研究了后3个因素对CdS光腐蚀程度的影响.对于氨氮初始质量浓度为50mg/L的模拟废水,在通空气搅拌条件下,n(CdS):n(TiO2)=0.17的CdS/TiO2催化剂脱氮效果最佳,此时经紫外光照2h后脱除氨氮效率达41.5%.实验结果表明:复合催化剂中CdS的含量是影响光催化活性和光腐蚀程度的重要因素.  相似文献   

11.
Hydrogen evolution reaction/Oxygen evolution reaction (HER/OER) synergy would be the most important issue for overall water splitting. The Pt-free 1T/2H-MoS2/CdS/MnOx hollow core–shell nanocomposites are fabricated via a continuous hydrothermal–chemical method; therefore, the OER co-catalysts MnOx and CdS shell are deposited on the surface of SiO2 nanosphere templates continuously via hydrothermal–chemical method. Subsequently, the SiO2 templates are etched via chemical method and the 2H-MoS2/CdS hollow core–shell heterojunction and 1T-MoS2 HER co-catalyst are introduced via one-step hydrothermal method. Evaluated by photocatalytic performance, the 1T/2H-MoS2/CdS/MnOx exhibits an enhanced HER performance of about ~50 folds than that of single CdS hollow nanosphere, and achieves a decent overall water splitting performance of about ~1668.00(H2)/824.61(O2) μmol/g?h, which can be mainly ascribed to the well HER/OER synergy and formation of hollow core–shell structure. Therefore, the 1T-MoS2 with quick electron transport and decent solid/liquid interface can promote the photogenerated electron diffusing, the MnOx with mixed Mn3+/Mn4+ ions can activate the hole-related species for OH? oxidation and promote H2O2 decomposition, the 2H–MoS2/CdS heterojunction can separate the charge carrier and meet the potential to achieve overall water splitting. Additionally, the 1T/2H-MoS2 with decent lattice matching can improve the charge carrier transport, the 1T-MoS2 with sufficient specific surface areas can increase active sites and the hollow core–shell structure can increase solar efficiency which is also beneficial for enhancing the overall water splitting performance and stability.  相似文献   

12.
本实验以钛酸四丁酯为钛源,醋酸镉为镉源,利用静电纺丝的方法制备了直径~250 nm的电纺丝纳米纤维。通过高温煅烧和硫化钠溶液进行水热处理,得到CdS超薄片层包覆TiO2中空结构的纳米纤维。推测该复合结构形貌的形成过程为:在Ti/Cd(摩尔比)为1:1和2:1时,由于CdO的含量较高,反应过程中CdO溶解,并与反应溶液中的S2-形成CdS超薄片层生长在纤维的外表面,剩余的TiO2纳米粒子聚集形成中空的纳米管状结构;而Ti/Cd(摩尔比)为4:1和8:1时,由于溶解的CdO较少不足以形成TiO2纳米管,同时,生成的CdS也不足以完全包覆TiO2纳米纤维形成非管状结构。当Ti/Cd为1:1时,TiO2@CdS复合材料具有最好的产氢活性。在300 W氙灯光照条件下和加UVCUT-420 nm滤光片下,50 mg催化剂产氢速率分别为19.7 μmol/h和3.4 μmol/h,这主要是由于所得到的复合结构中TiO2为非晶材料。进一步在惰性气氛下煅烧,也很难将TiO2晶化。  相似文献   

13.
随着化石燃料大量使用带来的气候变化和环境污染问题日趋严重,寻找清洁高效的可再生能源用做传统化石燃料的替代品,已经成为当前的研究热点。光驱动的水分解反应被认为是太阳能制氢的可行途径。水的全分解包括两个半反应-水的氧化和质子还原。其中水的氧化反应是一个涉及四个电子和四个质子转移的复杂过程,需要很高的活化能,被认为是全分解水反应的瓶颈步骤。因此,开发高效、稳定、廉价丰产的水氧化催化剂是人工光合作用突破的关键因素。立方烷具有类似自然界光合作用酶光系统II(PSII)活性中心Mn_4CaO_5簇的结构,世界各国的科学家受自然界光合作用的启发,开发出了许多基于过渡金属的立方烷结构的催化剂,常见的有锰、钴和铜等立方烷催化剂。本文简要地综述了近年来立方烷分子催化剂在光催化水氧化中的研究进展。首先介绍了立方烷基光催化水氧化反应历程,继而详细介绍了基于有机配体的立方烷配合物和全无机的多金属氧酸盐立方烷水氧化催化剂,其次是半导体(BiVO4或聚合的氮化碳(PCN))为捕光材料复合立方烷分子催化剂的水氧化体系最新研究进展。最后总结并展望了该领域所面临的挑战及其前景。  相似文献   

14.
可见光驱动的光催化制氢与有机氧化合成相结合由于其环境友好性和可持续性而极具吸引力,它可以在温和的条件下同时产生清洁的氢气燃料和高价值化学品,而无需牺牲剂。半导体材料和金属有机骨架(MOFs)材料由于其性能和优势,在光催化领域得到了广泛的应用。在这项工作中,我们通过静电自组装成功合成了一种名为Cd S/PFC-8的新型有效催化剂。其中,PFC-8作为镍基金属有机骨架,Cd S/PFC-8复合材料作为无贵金属催化剂,在可见光下具有优异的光催化制氢和苯甲醇氧化性能。对Cd S/PFC-8复合材料进行了一系列催化表征。X射线衍射(XRD)和扫描电子显微镜(SEM)结果表明了Cd S/PFC-8复合材料的成功合成。X射线光电子能谱(XPS)表明了Cd S纳米棒与PFC-8之间存在一定的界面相互作用。通过紫外-可见漫反射光谱(DRS)、光致发光光谱(PL)和电化学测试对光电性能进行了表征,表明Cd S/PFC-8复合材料的可见光响应和光催化可行性。对不同催化剂的光催化实验结果进行比较,在可见光下,Cd S/PFC-8复合材料将H2的产生与苯甲醇的选择性氧化耦合,表现出显著的H2产率3376μmol...  相似文献   

15.
结合异质结构建与共催化剂改性, 以花球状Ni(OH)2为前驱体, 经热磷酸化后得到Ni(PO3)2-Ni2P二元助催化剂, 借助超声化学合成法, 与CdS NPs复合, 形成非贵金属CdS基三元光催化材料Ni(PO3)2-Ni2P/CdS NPs. 以Na2S-Na2SO3为牺牲剂, 在可见光(λ>420 nm)照射下, 在不借助任何贵金属的情况下, 负载量为8%(质量分数)的Ni(PO3)2-Ni2P/CdS NPs复合材料的光催化产氢速率达到4237 μmol·g?1·h?1, 为CdS NPs(217 μmol·g?1·h?1)的19倍. 在产氢循环实验中, 反应进行到第6次循环(18 h)后, 复合材料的产氢速率约为初始的89%, 具有较好的稳定性. 与CdS NPs相比, Ni(PO3)2-Ni2P/CdS NPs的吸收边明显红移, 禁带宽度降至1.86 eV, 并降低了H+还原的过电位, 显示出增强的光吸收性能和适宜的带隙结构. 通过Ni(PO3)2-Ni2P与CdS NPs之间的协同效应, 有效促进了光生载流子的分离, 提高了产氢活性和稳定性.  相似文献   

16.
TiO2 nanosheets mainly exposed (001) facet were prepared through a hydrothermal process with HF as the morphology-directing agent. Ru and RuO2 species were loaded by photo-deposition methods to prepare the photocatalysts. The structural features of the catalysts were characterized by X-ray di raction, transmission electron microscopy, inductively cou-pled plasma atomic emission spectrum, and H2 Temperature-programmed reduction. The photocatalytic property was studied by the O2 evolution from water oxidation, which was examined with respect to the in uences of Ru contents as well as the oxidation and reduction treatments, suggesting the charge separation effect of the Ru species co-catalysts on di erent facets of TiO2 nanosheets. In contrast to Ru/TiO2 and RuO2/TiO2 with the single deposited co-catalyst, the optimized catalyst 0.5%Ru-1.0%RuO2/TiO2 with dual co-catalysts achieved a much improved catalytic performance, in terms of the synergetic effect of dual co-catalysts and the enhanced charge separation effect.  相似文献   

17.
Hollow structures with an efficient light harvesting and tunable interior component offer great advantages for constructing a Z‐scheme system. Controlled design of hollow cobalt sulfide (Co9S8) cubes embedded with cadmium sulfide quantum dots (QDs) is described, using hollow Co(OH)2 as the template and a one‐pot hydrothermal strategy. The hollow CdS/Co9S8 cubes utilize multiple reflections of light in the cubic structure to achieve enhanced photocatalytic activity. Importantly, the photoexcited charge carriers can be effectively separated by the construction of a redox‐mediator‐free Z‐scheme system. The hydrogen evolution rate over hollow CdS/Co9S8 is 134 and 9.1 times higher than that of pure hollow Co9S8 and CdS QDs under simulated solar light irradiation, respectively. Moreover, this is the first report describing construction of a hollow Co9S8 based Z‐scheme system for photocatalytic water splitting, which gives full play to the advantages of light‐harvesting and charges separation.  相似文献   

18.
Carbon dioxide (CO2) is one of the main greenhouse gases in the atmosphere. The conversion of CO2 into solar fuels (CO, HCOOH, CH4, CH3OH, etc.) using artificial photosynthetic systems is an ideal way to utilize CO2 as a resource and reduce CO2 emissions. A typical artificial photosynthetic system is composed of three key components: a photosensitizer (PS) to harvest visible light, a catalyst (C) to catalyze CO2 or protons into carbon-based fuels or H2, respectively, and a sacrificial electron donor (SED) to consume the holes generated in the PS. In most cases, the PS and catalyst are two different components of a system. However, some components that possess both light harvesting and redox catalysis functionalities, e.g., nano-semiconductors, are referred to as photocatalysts. During photocatalysis, the PS is typically excited by photons to generate excited electrons. The excited electrons in the PS are transferred to the catalyst to generate a reduced catalyst. The reduced catalyst is used as an active intermediate to perform CO2 binding and transformation. The PS can be recovered through a reaction with the SED. Nano-semiconductors have been used as photosensitizers and/or photocatalysts in photocatalytic CO2 reduction systems owing to their excellent photophysical and photochemical properties and photostability. CdS and CdSe nano-semiconductors, such as quantum dots, nanorods, and nanosheets, have been widely used in the construction of photocatalytic CO2 reduction systems. Systems based on CdS or CdSe nano-semiconductors can be classified into three categories. The first category is systems based on CdS or CdSe photocatalysts. In these systems, CdS or CdSe nano-semiconductors function as photocatalysts to catalyze CO2 reduction without a co-catalyst under visible-light irradiation. The CO2 reduction reaction occurs at the surface of the CdS or CdSe nano-semiconductors. The second category is systems based on CdS or CdSe composite photocatalysts. CdS or CdSe nano-semiconductors are combined with functional materials, such as reduced graphene oxide or TiO2, to prepare composite photocatalysts. These composite photocatalysts are expected to improve the lifetime of the charge separation state and inhibit the photocorrosion of the nano-semiconductors during photocatalysis. The third category is hybrid systems containing a CdS nano-semiconductor and molecular catalysts, such as nickel and cobalt complexes and iron porphyrin. In these hybrid systems, CdS functions as a photosensitizer and the CO2 reduction reaction occurs at the molecular catalyst. This review article introduces the construction of artificial photosynthetic systems and the photocatalytic mechanism of nano-semiconductors, and summarizes the representative works in the three aforementioned categories of systems. Finally, the challenges of nano-semiconductors for photocatalytic CO2 reduction are discussed.  相似文献   

19.
Using state-of-the-art density functional theoretical calculations, we have modelled a facetted CdS nanotube (NT) catalyst for photocatalytic water splitting. The overall photocatalytic activity of the CdS photocatalyst has been predicted based on the electronic structures, band edge alignment, and overpotential calculations. For comparisons, we have also investigated the water splitting process over bulk CdS. The band edge alignment along with the oxygen evolution reaction/hydrogen evolution reaction (OER/HER) mechanism studies help us find out the effective overpotential for the overall water splitting on these surfaces. Our study shows that the CdS NT has a highly stabilized valence band edge compared to that of bulk CdS owing to strong p–d mixing. The highly stabilized valence band edge is important for the hole-transfer process and reduces the risk of electron-hole recombination. CdS nanotube requires less overpotential for water oxidation reaction than the bulk CdS. Our findings suggest that the efficiency of the water oxidation/reduction process further improves in CdS as we reduce its dimensionality, that is going from bulk CdS to one-dimensional nanotube. Furthermore, the stabilized valence band edge of CdS nanotube also improves the photostability of CdS, which is a problem for bulk CdS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号