首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
作为影响光催化反应的关键因素,光催化剂的活性位点数量直接决定了光催化活性.传统石墨相氮化碳(g-C3N4)由于活性位点不足而表现出较弱的光催化活性.为了增加g-C3N4的活性位点数量,研究人员采取了各种策略,包括杂原子掺杂、表面改性和空位工程.其中,表面改性是增加催化剂活性位点的有效策略之一.氰基具有很强的吸电子能力,可在光催化反应中作为活性位点.然而,关于氰基作为CO2光还原活性位点的研究并不多,特别是对于氰基修饰增强g-C3N4活性的机理尚不清楚.构建多孔结构是暴露催化剂活性位点的有效措施之一.多孔结构可以有效改善纳米片的团聚,促进活性位点暴露,增大反应物与活性位点间的接触机会;并且相互连接的多孔网络可形成独特的传输通道,进一步促进载流子迁移.本文通过分子自组装和碱辅助策略合成了氰基改性的多孔g-C3N4纳米片(MCN-0.5).氰基由于具有良好的吸电子特性,促进了局部载流子分离,并充当了光催化反应的活性位点.受益于活性位点的影响,MCN-0.5表现出显著增强的光催化CO2还原活性.在不添加牺牲剂和助催化剂的条件下,MCN-0.5样品上CO和CH4产率达到13.7和0.6μmol·h–1·g–1,分别是传统煅烧法制备的g-C3N4(TCN)产生CO和CH4产率的2.5和2倍.通过盐酸处理MCN-0.5除去氰基,并没有破坏样品的形貌结构,但催化剂的光催化活性显著降低,证实了氰基活性位点的作用.光还原Pt纳米颗粒的实验结果表明,与对照样品相比,氰基修饰的样品上还原的Pt纳米颗粒更多,进一步证实了引入氰基为光还原反应提供了更多活性位点.CO2等温吸附测试结果表明,MCN-0.5对CO2的吸附能力不如对照样品,间接证明氰基能成为活性位点是由于其良好的吸电子能力促进了局部载流子分离.瞬态荧光光谱、光电化学表征结果表明,氰基修饰增强了载流子迁移和分离能力.根据理论计算和原位红外光谱提出了氰基修饰增强g-C3N4光催化还原CO2活性的作用机理.以三聚氰胺为前驱体接枝氰基的g-C3N4也表现出比体相g-C3N4明显增强的光催化还原CO2活性,这证明了氰基改性增强g-C3N4活性策略的通用性.本文通过在光催化剂材料中设计活性位点为太阳能高效转化提供了一个有效途径.  相似文献   

2.
由于石墨相氮化碳(g-C3N4)的独特结构和性质,特别是其具有合适的能带结构位置及可调控的晶体结构,被广泛应用于光催化产氢反应中.然而,纯相氮化碳具有较快的光生电荷复合速率,这使其光催化产氢活性较低.目前,利用非金属或过渡金属原子掺杂可有效提升电荷分离速度,从而提高光催化产氢活性.相比于非金属掺杂,g-C3N4的三嗪环...  相似文献   

3.
以硝酸铈和三聚氰胺为原料,采用热解法合成系列Ce掺杂石墨相氮化碳(g-C_3N_4).采用X射线衍射仪(XRD)、透射电子显微镜(TEM)、傅里叶变换红外光谱仪(FTIR)、紫外-可见漫反射光谱仪(UV-Vis DRS)、荧光光谱仪(PL)和X射线光电子能谱仪(XPS)等对样品进行了表征.结果表明,Ce掺杂使g-C_3N_4晶粒尺寸减小,比表面积增大,光生电子/空穴对复合几率降低,并影响到能带结构.在可见光下光催化降解亚甲基蓝水溶液的结果表明,Ce掺杂g-C_3N_4的可见光光催化活性远优于纯g-C_3N_4.其中,0.10-Ce-C_3N_4样品80 min内对亚甲基蓝的降解率高达98.51%,速率常数达0.0506 min~(-1),是纯g-C_3N_4的4.9倍.  相似文献   

4.
类石墨相氮化碳改性研究进展   总被引:1,自引:0,他引:1  
梁海欧  许瞳  白杰  李春萍 《化学通报》2022,85(1):72-77,51
类石墨相氮化碳(g-C3N4)是一种不含金属的半导体材料,它具有制备方法简单、合成原材料价格低廉、含量丰富,具有很好的物理化学性质及热稳定性等优点,并且其较窄的禁带宽度满足可以直接吸收一部分可见光的要求,这些特有的优势使其一度成为人们研究和关注的焦点.然而,它的比表面积小、光生电子和空穴复合率高以及可见光利用率不足等弊...  相似文献   

5.
杨秋实  胡少年  姚雅萱  林先刚  杜海威  袁玉鹏 《催化学报》2021,42(1):217-224,后插44
石墨相氮化碳是一类非金属聚合物,其光催化特性,特别是在光催化水分解反应中的应用引起了广泛关注.目前,块体石墨相氮化碳的光催化性能主要受比表面积较大、光子利用率较低等因素的制约.前期大量研究主要采用异质元素掺杂、负载助催化剂、设计缺陷、构建异质结构等策略来进一步提升光催化性能.石墨相氮化碳具有二维层状的晶体结构,理论上其形貌和显微结构会对光催化性能有显著影响.因此,本文从调节材料本征结构这一角度,报道了一种调控石墨相氮化碳层间距的方法.将三聚氰胺和氯化铵混合后,通过微波快速加热,利用氯化铵分解过程中释放氨气这一特性,破坏石墨相氮化碳层间的范德华力,增大其层间距并成功获得了薄片状结构.同时,微波加热可以实现快速升温,有效避免了电炉加热煅烧时间较长导致前驱体挥发的问题.采用扫描电子显微镜、氮气等温吸脱附曲线、X射线衍射、红外光谱、紫外-可见吸收光谱、荧光光谱、光催化制氢和电化学测试等表征手段,研究了不同氯化铵含量对石墨相氮化碳层间距的作用以及调控层间距对光催化活性的影响.通过扫描电子显微镜观察,与三聚氰胺加热所得到的块状结构相比,适量的氯化铵(氯化铵质量比为11%)和三聚氰胺在微波快速加热处理后可以获得薄片状结构.氮气等温吸脱附曲线进一步证实了显微结构的变化,薄片状结构和块体结构相比BET比表面积提升了2.1倍.X射线衍射分析证实随着氯化铵含量的增加,(002)衍射峰位置左移,意味着层间距逐渐增大.红外光谱则没有明显的变化,说明氯化铵和三聚氰胺共烧并不会改变石墨相氮化碳的化学结构.光催化制氢测试发现,添加适量的氯化铵和三聚氰胺共烧可以明显提升光催化制氢性能.与块体材料(4.67μmol h?1)相比,层间距增大后光催化活性提升了约5倍(23.6μmol h?1).结合紫外-可见吸收光谱和电化学莫特肖特基测试,我们发现层间距增大后可以显著提升石墨相氮化碳的可见光吸收性质,减小带宽,并获得更为合适的能级结构.且样品的导电性能得到改善,有利于电荷传输,光生电子空穴对的分离效率进一步提升.以上结果说明调控石墨相氮化碳的层间距是一种简单有效提升催化剂光催化性能的手段.  相似文献   

6.
杨秋实  胡少年  姚雅萱  林先刚  杜海威  袁玉鹏 《催化学报》2021,42(1):217-224,后插44
石墨相氮化碳是一类非金属聚合物,其光催化特性,特别是在光催化水分解反应中的应用引起了广泛关注.目前,块体石墨相氮化碳的光催化性能主要受比表面积较大、光子利用率较低等因素的制约.前期大量研究主要采用异质元素掺杂、负载助催化剂、设计缺陷、构建异质结构等策略来进一步提升光催化性能.石墨相氮化碳具有二维层状的晶体结构,理论上其形貌和显微结构会对光催化性能有显著影响.因此,本文从调节材料本征结构这一角度,报道了一种调控石墨相氮化碳层间距的方法.将三聚氰胺和氯化铵混合后,通过微波快速加热,利用氯化铵分解过程中释放氨气这一特性,破坏石墨相氮化碳层间的范德华力,增大其层间距并成功获得了薄片状结构.同时,微波加热可以实现快速升温,有效避免了电炉加热煅烧时间较长导致前驱体挥发的问题.采用扫描电子显微镜、氮气等温吸脱附曲线、X射线衍射、红外光谱、紫外-可见吸收光谱、荧光光谱、光催化制氢和电化学测试等表征手段,研究了不同氯化铵含量对石墨相氮化碳层间距的作用以及调控层间距对光催化活性的影响.通过扫描电子显微镜观察,与三聚氰胺加热所得到的块状结构相比,适量的氯化铵(氯化铵质量比为11%)和三聚氰胺在微波快速加热处理后可以获得薄片状结构.氮气等温吸脱附曲线进一步证实了显微结构的变化,薄片状结构和块体结构相比BET比表面积提升了2.1倍.X射线衍射分析证实随着氯化铵含量的增加,(002)衍射峰位置左移,意味着层间距逐渐增大.红外光谱则没有明显的变化,说明氯化铵和三聚氰胺共烧并不会改变石墨相氮化碳的化学结构.光催化制氢测试发现,添加适量的氯化铵和三聚氰胺共烧可以明显提升光催化制氢性能.与块体材料(4.67μmol h?1)相比,层间距增大后光催化活性提升了约5倍(23.6μmol h?1).结合紫外-可见吸收光谱和电化学莫特肖特基测试,我们发现层间距增大后可以显著提升石墨相氮化碳的可见光吸收性质,减小带宽,并获得更为合适的能级结构.且样品的导电性能得到改善,有利于电荷传输,光生电子空穴对的分离效率进一步提升.以上结果说明调控石墨相氮化碳的层间距是一种简单有效提升催化剂光催化性能的手段.  相似文献   

7.
8.
采用热聚合法和水热法相结合的方法制备了g-C_3N_4/SnO_2复合光催化剂。利用XRD、SEM、TEM、FT-IR和UV-Vis DRS等多种测试手段对所得样品的物相结构、微观形貌和吸光特性等进行了表征。结果表明,异质结构复合光催化剂的最大光吸收边位置相对纯相SnO_2发生了明显的红移,并且SnO_2颗粒均匀分布于g-C_3N_4表面,其中最优组分(50%-g-C_3N_4/SnO_2)光催化降解染料罗丹明B(RhB)的效率达到了纯相g-C_3N_4的3.78倍。  相似文献   

9.
为优化石墨相氮化碳(g-C3N4)光催化剂的结构,改善其对污染物的降解性能,本文以三聚氰胺为前驱体,通过高温煅烧和热氧化剥离制备了二维石墨相氮化碳(2D-C3N4),并用光还原法一步合成纳米银/二维石墨相氮化碳/还原氧化石墨烯(Ag/2D-C3N4/rGO)复合光催化剂。通过X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)、光致发光光谱(PL)、X射线光电子能谱(XPS)、氮气吸附脱附等温曲线(BET)等对材料进行表征。 以头孢曲松钠为目标污染物,探究pH值、催化剂用量、头孢曲松钠初始浓度等因素对催化剂的吸附、降解性能的影响,并探究降解反应机理。 当pH=6.0,催化剂用量为0.3 g/L,头孢曲松钠初始浓度为10.0 mg/L时,复合材料对头孢曲松钠的降解率可达到89.1%。 催化剂的稳定性较强,具有实际应用价值,可用于处理含头孢类抗生素的废水。  相似文献   

10.
Since Fujishima and Honda demonstrated the photoelectrochemical water splitting on TiO2 photoanode and Pt counter electrode, photocatalysis has been considered as one of the most promising technologies for solving both the problems of environmental pollution and energy shortage. This process can effectively use solar energy, the most abundant energy resource on the earth, to drive various catalytic reactions, such as water splitting, CO2 reduction, organic pollutant degradation, and organic synthesis, for energy generation and environmental purification. Except for the various metal-based semiconductors, such as metal oxides, metal sulfides, and metal oxynitrides, developed for photocatalysis, graphitic carbon nitride (g-C3N4) has attracted significant attention in the recent years because of its earth abundancy, non-toxicity, good stability, and relatively narrow band gap (2.7 eV) for visible light response. However, g-C3N4 suffers from insufficient absorption of visible light in the solar spectrum and rapid recombination of photogenerated electrons and holes, thus resulting in low photocatalytic activity. Until now, various strategies have been developed to enhance the photocatalytic activity of g-C3N4, including element doping, nanostructure and heterostructure design, and co-catalyst decoration. Among these methods, element doping has been found to be very effective for adjusting the unique electronic and molecular structures of g-C3N4, which could significantly expand the range of photoresponse under visible light and improve the charge separation. Especially, non-metal doping has been well investigated frequently to improve the photocatalytic activity of g-C3N4. The non-metal dopants commonly used for the doping of g-C3N4 include oxygen (O), phosphorus (P), sulfur (S), boron (B), and halogen (F, Cl, Br, I) and also carbon (C) and nitrogen (N) (for self-doping), as they are easily accessible and can be introduced into the g-C3N4 framework through different physical and chemical synthetic methods. In this review article, the structural and optical properties of g-C3N4 is introduced first, followed by a brief introduction to the modification of g-C3N4 as photocatalysts. Then, the progress in the non-metal doped g-C3N4 with improved photocatalytic activity is reviewed in detail, with the photocatalytic mechanisms presented for easy understanding of the fundamentals of photocatalysis and for guiding in the design of novel g-C3N4 photocatalysts. Finally, the prospects of the modification of g-C3N4 for further advances in photocatalysis is presented.  相似文献   

11.
铂单原子作为一种新型催化剂,具有活性组分高度分散、配位未饱和以及原子利用率高等特点,在光催化还原CO2方面表现出巨大潜力.但是由于成本高昂和负载量高等因素,极大地限制了其在实际生产中的广泛应用.合成具有低负载量贵金属铂,同时提高铂基单原子催化剂的催化活性仍然是一项巨大挑战.晶化石墨相氮化碳的二维结构,特别是其稳定晶化结构所形成的限域环境及其可扩展的π共轭单元,可以有效锚定金属单原子,因而可作为金属单原子的良好载体.已有的金属单原子载体氮化碳多为弱晶或非晶结构,基于晶化氮化碳的高结晶度和高结构稳定性,合理构建金属单原子沉积的结晶石墨相氮化碳体系仍十分困难.关于晶化氮化碳负载金属单原子催化剂应用于光催化还原CO2的研究至今鲜有报道.本文开发了一种具有低负载量的铂基双单原子锚定晶化氮化碳的制备方法,通过设计氮化碳缺陷位点,在晶化石墨相氮化碳载体表面构筑氮缺陷位点,利用载体的丰富氮缺陷作为陷阱,有效捕获双单原子金属前驱体,成功制备了具有低负载量(铂为0.32wt%)的双金属铜铂单原子催化剂,并用于光催化CO2还原反应中.结果表明,相比于单原子铂催化剂和单原子铜催化剂,该种双单原子铜铂体系在光催化还原CO2-CO中表现了更好催化活性.在光照3.5 h后,铜铂双单原子体系的CO产量达到41.1μmolg-1.除此之外,铜铂双单原子体系在光催化过程中有利于促进CH4生成,在没有任何牺牲剂或共催化剂作用下其CH4的产量为9.8μmolg-1,其产率分别是相同光照条件下单原子铂催化剂(3.2μmolg-1)和单原子铜催化剂(2.0μmol g-1)的三倍和五倍.高分辨透射电镜结果表明,制备的氮化碳呈现了高度晶化的结构.球差扫描透射电子显微镜结果表明,铂和铜物种分别以高度分散的单原子形式存在,且在双金属铜铂单原子体系并未发现铜颗粒和铂颗粒.电化学分析结果表明,通过双配位活性位点的桥梁作用提高光生电子的转移效率,使得铜铂双单原子体系具有更高的电流密度和更好的载流子传输能力.原位X射线光电子能谱结果表明,金属铂和铜单原子成功负载在晶化石墨相氮化碳上,且在光照过程中单原子铂和铜的结合能的电子密度有些许改变,证明了该双金属单原子体系在光催化过程中协同动态光电子的迁移转移;原位红外傅里叶变换光谱实验结果表明,这种稳定的铜铂双单原子体系有利于促进催化还原反应中中间体产物的加氢过程,对终产物的解离和释放有明显的促进作用,从而提高光催化还原CO2反应的活性和选择性.  相似文献   

12.
高活性低成本氧还原反应(ORR)电催化剂是燃料电池和金属/空气电池等可再生能源技术的关键组成部分.在离子液体[(C16mim)2CuCl4]和质子化的石墨化氮化碳(g-CN)的存在下,采用简易的水热反应制备了Cu/g-CN电催化剂用于ORR.与纯的g-CN相比,所制Cu/g-CN表现出高的ORR催化活性:起始电势正移99 mV,为2倍动力学电流密度.另外,Cu/g-CN还表现出比商用Pt/C(HiSPECTM 3000,20%)催化剂更好的稳定性和甲醇容忍性.因此,该催化剂作为廉价的高效ORR电催化剂有望应用于燃料电池中.  相似文献   

13.
半导体光催化是一种利用半导体将太阳能转换为高能化学能的绿色技术,在可再生清洁能源生产和污染物修复领域有着巨大的应用前景.石墨相氮化碳(g-C3N4)作为一种环境友好的非金属半导体,因其制备工艺简单、来源丰富、热稳定性和化学稳定性好、可见光吸收范围及特殊的电子性能而受到广泛关注.但一般常用氮源前驱体如二氰二胺、三聚氰胺等...  相似文献   

14.
Thanks to the dissolution of bulk carbon nitride (CN), a heterojunction of CN and sulfur-doped CN was constructed via a solution-based processing way, which led to a more homogeneous composite and an improved photocatalytic H2 production activity up to 230% with respect to that by conventional impregnating.  相似文献   

15.
In this work, graphitic carbon nitride (GCN) photocatalyst-incorporated polyacrylonitrile (PAN) nanofibres (GCN/PAN nanofibres) were successfully prepared using electrospinning technique. The physicochemical properties of the fabricated GCN/PAN nanofibres were analysed using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), elemental analyser, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV–vis–NIR spectroscopy. The photocatalytic degradation by GCN/PAN nanofibres exhibited 90.2% photodegradation of partially hydrolysed polyacrylonitrile (HPAM) after 180 min under UV light irradiation in a suspension photocatalytic reactor. The results suggest that the photodegradation of HPAM contaminant by GCN/PAN nanofibres was due to the synergetic effects of HPAM adsorption by the PAN nanofibres and HPAM photodegradation by the GCN. This study provides an insight into the removal of HPAM from polymer-flooding produced water (PFPW) through photocatalytic degradation of liquid-permeable self-supporting nanofibre mats as a potentially promising material to be used in industrial applications.  相似文献   

16.
近年来,等离子体材料因具有独特的局域表面等离子体共振(LSPR)效应,可实现可见光到近红外范围内光利用,因此引起人们的广泛关注.利用等离子体材料(贵金属或重掺杂半导体材料)合理构建异质结构,可以同时拓宽光催化剂的光谱响应范围,抑制载流子的复合,从而提高光催化活性.在已报道的等离子体半导体中,WO3–x具有无毒、价廉以及...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号