首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
半导体光催化体系的助催化剂在光生电荷分离和表面催化反应过程中扮演着重要的角色.然而,在反应条件下助催化剂的化学态是否发生改变尚不清楚.本文以钽酸钠为模型光催化剂,系统地研究了镍基助催化剂在光催化分解水反应中的化学态.结果发现,在光诱导条件下半导体钽酸钠单晶表面自发形成了金属镍和氧化镍双助催化剂.首先用传统的水热法合成只暴露单一晶面的六面体钽酸钠半导体单晶光催化剂和暴露不等同晶面的二十六面体钽酸钠半导体单晶光催化剂.原位光沉积结果显示,暴露不同晶面的二十六面体钽酸钠半导体单晶光催化剂存在晶面间的电荷分离现象,进一步利用该现象可以确定不同催化活性位上镍基助催化剂的作用.XPS结果显示,半导体钽酸钠单晶表面的镍基助催化剂存在的不同价态.高分辨透射电镜结果表明,不同晶面上的镍基助催化剂具有不同的形貌,并且通过晶格衍射条纹的对比确认了不同镍基助催化剂物种的归属和作用.将表面浸渍氧化镍的二十六面体钽酸钠半导体光催化剂用于全分解水测试发现,反应开始阶段H_2:O_2比值小于2:1,说明部分光生电子被消耗掉,用于还原氧化镍,生成了金属镍.将表面还原的金属镍光催化剂进行全分解水测试发现,反应开始阶段H_2:O_2比值大于2:1,说明部分光生空穴被消耗掉,用于氧化金属镍,生成了氧化镍,金属镍和氧化镍最终在反应的过程中达到了平衡.金属镍担载在{001}晶面上,起着还原助催化剂的作用,参与质子还原,释放出H_2;氧化镍担载在其他晶面上,扮演着氧化助催化剂,参与水的氧化,释放出O_2;金属镍和氧化镍共同促进了光催化全分解水反应,使反应活性达到了最高.这种双助催化剂的自发形成现象不仅存在于二十六面体钽酸钠单晶半导体表面,在六面体钽酸钠单晶半导体表面也同样存在,是一个普适性的现象.在六面体钽酸钠半导体单晶光催化剂表面同样可以发现不同形貌的镍基助催化剂,分别归属于金属镍和氧化镍.本文说明了助催化剂的化学态在光催化反应的条件下是可以发生改变的,并且光生电荷可以在半导体表面诱导双助催化剂的自发形成.  相似文献   

2.
近年来,随着一次能源过度消耗所带来的能源和环境问题日益突出,开发廉价、可持续的清洁能源备受关注.光催化分解水制氢可利用太阳能普遍率高和几乎免费等特点制取燃烧热值高、燃烧产物无污染的氢气能源.自从1972年日本的Fujishima教授和Honda教授首次发现TiO2单晶电极光催化分解水可以产生氢气以来,光催化制氢被认为是实现可持续制氢最有潜力的方法之一.有效地将太阳能转换为化学能的关键是设计高效的电荷分离和运输结构.然而,现有的大多数半导体光催化剂因缺少活性位点、光生载流子易复合等缺点而无法达到较高的转换效率.因此,如何提高半导体光催化产氢的转换效率是现阶段面对的重要问题.在众多解决方法中,助催化剂的引入可以为光催化制氢反应增加活性位点,促进光生载流子的有效分离,进而有效地提高半导体光催化产氢速率.本文总结了多种不同类型的助催化剂应用于光催化产氢研究的最新进展,详细讨论了助催化剂在增强光吸收、提供活性位点、增加催化剂稳定性和促进电荷分离等方面的作用,阐明了助催化剂在光催化分解水制氢中的反应机理,同时还提出了光催化制氢的未来研究和预测.本文将助催化剂分为以下几种类别进...  相似文献   

3.
氢气具有无毒、能量密度高以及燃烧过程零污染等优点,被誉为是未来代替化石能源的优质新型能源载体.探索高效的、可持续的制氢技术对氢气能源发展至关重要.其中,光电化学水分解电池以太阳能作为驱动力将水分解成氢气和氧气,是解决能源和环境危机的理想途径之一.α-Fe2O3是一种窄带隙(~2.1 eV)半导体,可以吸收约40%的太阳光,同时具有天然丰度高、成本低等优点,是目前备受关注的光阳极材料.然而,由于α-Fe2O3空穴扩散距离短和表面产氧动力学慢等缺点,导致α-Fe2O3的光电分解水效率仍然较低.针对上述问题,目前主要通过掺杂、构建异质结和负载助催化剂等手段来改善其性能.其中,负载助催化剂可以有效降低水氧化活化能和促进表面电荷分离,是改善光阳极性能的有效手段.本文采用离子吸附和螯合剂调控水解两步法,将Ni(OH)2量子点(Ni(OH)2 QDs)原位生长于α-Fe2O3表面,成功构建了Ni(OH)2 QDs/α-Fe2O3复合光阳极.透射电子显微镜结果表明,Ni(OH)2以直径为3–5 nm的量子点附着于α-Fe2O3纳米棒表面,并形成独特且牢固的异质结结构.光电水氧化性能表明,所制备的Ni(OH)2 QDs/α-Fe2O3光电阳极表现出良好的光电性能,其光电流达到了1.93 mA·cm?2(1.23 V vs.RHE),是单纯α-Fe2O3的3.5倍,且Ni(OH)2 QDs助催化剂使α-Fe2O3的起始电位降低了~100 mV.2 h稳定性测试结果表明,Ni(OH)2 QDs助催化剂在提升α-Fe2O3光电水氧化性能的同时,自身能够保持良好的稳定性,这在Ni(OH)2作为光电水氧化助催化剂的研究中较为少见.通过电化学活性面积、开路电压、电化学阻抗谱、注入效率和强度调制光电流谱等表征了Ni(OH)2 QDs对α-Fe2O3光阳极和电解液界面电荷传输的影响.结果表明,Ni(OH)2 QDs不仅能充分暴露水氧化活性位点,促进载流子在界面快速迁移,而且能有效钝化α-Fe2O3表面态,从而降低光生电子-空穴表面复合几率.本文可为多功能和高效量子点助催化剂/半导体光阳极的构建及在光电分解水制氢方面的应用提供一定借鉴.  相似文献   

4.
氢能是实现碳中和目标的关键能源之一.光催化分解水制氢是一项绿色制氢技术,自从20世纪80年代日本科学家Honda和Fujishima首次发现了TiO2电极上的光电解水产氢以来,该技术已成为了全世界关注的研究方向.负载助催化剂能够提高电荷分离、降低过电势/活化能和加快表面反应,作为一种有效的改性策略被广泛地用于提高光催化分解水制氢效率.助催化剂的性能在很大程度上依赖其沉积方式,光沉积有助于加快光生电子-空穴对从光催化剂向助催化剂的转移,大幅改善了电荷的分离和传输效率,显著提升了催化剂的光催化性能.同时,该策略操作简单、条件温和以及无需额外添加氧化还原试剂来实现助催化剂的生成.从目前报道的助催化剂光沉积研究中可以发现,贵金属基助催化剂的光沉积在光催化分解水反应中已被广泛研究,然而贵金属价格昂贵、储量稀少,极大限制了其在大规模能源生产中的应用.为此,光沉积地球储量丰富的非贵金属助催化剂受到了研究者高度重视,近年来也取得了一些重要的进展,但尚未有综述进行报道.本文综述了近年来光沉积非贵金属光催化分解水助催化剂的研究进展.总结了非贵金属水分解助催化剂光沉积的基础,包括光沉积...  相似文献   

5.
1.前言 在微多相光催化研究中,载有金属氧化物的窄禁带半导体(如CdS等Ⅱ~Ⅵ族半导体)颗粒催化剂,由于较佳的太阳光谱响应,近年来在太阳能光催化分解水制氢及其它光催化反应研究中日益受到重视。 在微多相光催化反应中,沉积在半导体颗粒上的金属微粒不仅起着俘获光生高能电荷的作用,而且在后续的氧化还原反应中又起着活性中心、使反应加速的作用。依照半导体物理能带理论,金属与半导体间的接触,可以是欧姆接触,也可以是肖特基接触。前者有利于电  相似文献   

6.
近年来,Fenton反应由于其成本低,反应速度快,操作简单等优势受到了广泛的研究.传统的均相Fenton反应可通过H2O2氧化Fe2+产生具有强氧化性的羟基自由基,用于处理难降解的有机物.然而,Fenton反应存在两个主要问题,首先,在Fenton反应中需要加入大量的酸来维持酸性环境,以保证反应的最佳活性.其次,Fenton反应中铁离子不断流失并形成固体污泥,这严重影响了Fenton反应产生?OH的效率.目前,将光催化反应与非均相芬顿反应相结合是改善这些问题的有效方案.非均相光芬顿反应不仅能提高有机物降解的活性,而且通过光催化剂导带上的电子有效减少Fe^3+的浸出和铁氢氧化物沉淀的产生.最近,作为一种可见光Fenton催化剂,α-Fe2O3可以在几乎中性的条件下发生光芬顿反应,这解决了在反应过程中需要随时调整PH值的问题.此外,光照条件下α-Fe2O3价带上的电子能跃迁至导带并将Fe3+还原成Fe^2+,从而减少铁离子的损耗.然而,由于光生载流子复合率较高等问题,单一α-Fe2O3光催化剂的催化活性仍不理想.构建具有2D/2D结构的S型异质结可以缩短电子在界面间的传输距离,增大材料的活性位点,将光生电子-空穴在空间上分离,从而有效增强光生载流子的分离效率.因此,构建2D/2Dα-Fe2O3/Bi2WO6 S型异质结,并用于光芬顿反应有望进一步提高对有机污染物的降解效率.本文通过简易的水热法制备了具有2D/2D结构的α-Fe2O3/Bi2WO6 S型异质结光芬顿催化剂,并通过XRD、BET、TEM、XPS和UV-Vis等手段对催化剂的晶体结构、元素状态、微观结构、光学性质和化学组分进行了表征.通过在可见光照射下降解甲基蓝(MB),考察了α-Fe2O3/Bi2WO6的光芬顿催化活性.结果表明,由于光催化反应与Fenton反应的协同作用,α-Fe2O3/Bi2WO6表现出了明显增强的光-Fenton催化活性,最佳比例的α-Fe2O3/Bi2WO6的活性分别是单一α-Fe2O3和Bi2WO6的11.06倍和3.29倍.本文将光催化反应与Fenton反应相结合,一方面,光催化反应对Fe^3+的还原有促进作用,提高了Fe2+的浓度,从而提升羟基自由基的产量;另一方面,Fenton反应对α-Fe2O3/Bi2WO6中电子的利用阻止了光生载流子的复合,进一步提高了光催化降解效率.此外,由于二维纳米片之间具有更大的接触面积,2D/2D异质结可以缩短电荷传输时间和距离,促进了光生电子-空穴的分离.同时,具有较大比表面积的2D/2D材料可以在催化剂表面提供大量用于有机物氧化分解的活性位点.而S型异质结的构建不但促进了界面电荷的转移和分离,还能维持最佳的电荷氧化还原电位,这都提升了催化剂的光芬顿催化活性.总之,本文为合成可高效降解有机污染物的非均相光-芬顿催化剂提供了新的思路.  相似文献   

7.
能源和环境危机是当今社会面临的两大关键课题,利用太阳光驱动化学反应、将太阳能转化为化学能是解决上述问题的重要措施。通过光催化分解水是直接利用太阳能生产氢燃料的有效策略。光催化水分解过程可以分为三个基元步骤:光吸收、电荷分离与迁移、以及表面氧化还原反应。助催化剂可有效提高电荷分离效率、提供反应活性位点并抑制催化剂光腐蚀的发生,进而提高水分解效率。助催化剂也可以通过活化水分子以提高表面氧化还原动力学,进而提升整体光催化反应的太阳能转换效率。本文综述了助催化剂在光催化反应中的重要作用以及目前常用的助催化剂类型,详细说明了在光催化全解水过程中双助催化剂体系的构建及作用机理,并根据限制全解水的关键因素提出了新型助催化剂的设计策略。  相似文献   

8.
通过高温固相反应合成了铌酸盐KCa2Nb3O10及Cr3+和Mo6+掺杂(摩尔分数5%)的KCa2Nb3O10,并通过离子交换反应制备出HCa2Nb3O10及Cr3+和Mo6+掺杂的HCa2Nb3O10,采用X射线衍射、原子吸收光谱、扫描电镜等对所制得的样品进行了表征.在甲醇为电子给体、Pt为助催化剂的情况下,研究了催化剂HCa2Nb3O10及Cr3+和Mo6+掺杂的HCa2Nb3O10在紫外光辐射下分解水产氢的光催化活性,并讨论了引起催化剂活性差异的原因.  相似文献   

9.
Fe3+和Cr3+掺杂对K4Nb6O17光催化活性的影响   总被引:9,自引:1,他引:9  
通过高温固相反应合成了铌酸盐K4Nb6O17及Fe3 , Cr3 (1.0%, 摩尔分数)掺杂的K4Nb6O17, 并采用X射线衍射、紫外可见漫反射光谱、扫描电镜等对K4Nb6O17及Fe3 , Cr3 掺杂的K4Nb6O17进行了结构和形貌表征. 在甲醇为电子给体、 Pt为助催化剂的情况下, 研究了K4Nb6O17及Fe3 , Cr3 掺杂的K4Nb6O17作为催化剂在~400 nm紫外辐射下分解产生氢的光催化活性, 并讨论了引起3种催化剂活性差异的原因. 实验结果表明, Fe3 , Cr3 的掺杂促使K4Nb6O17的最大吸光波长由原来的400 nm分别拓展到500和450 nm. 在甲醇为电子给体、 Pt作为助催化剂时K4Nb6O17及Fe3 , Cr3 掺杂的K4Nb6O17作为催化剂, 光催化分解水的产氢速率分别为5.35, 5.00, 6.25 mmol·L-1·h-1.  相似文献   

10.
陈洋  冒国兵  唐亚文  武恒  王刚  张力  刘琪 《催化学报》2021,42(1):225-234,后插45-后插49
随着社会经济的快速发展,能源危机和环境污染问题成为世界各国关注的焦点.通过光催化剂将太阳能用于污染物降解、分解水产氢、CO2还原及有机物合成等领域,是解决上述问题的理想途径.过渡金属氧化物TiO2因其稳定性高、催化活性好、制备简单等优点,被认为是最理想的光催化材料.然而,TiO2带隙较宽、光响应范围窄、光量子效率低等缺点限制了其实际应用.将碳或Cr2O3与TiO2结合形成复合结构已被证明可以有效提升其光催化性能.另一方面,金属离子的掺杂可以有效提高氧化钛的可见光响应.本文利用具有高比表面积的金属有机骨架材料MIL-101(Cr)纳米材料作为模板、镉源和碳源,首先在MIL-101(Cr)表面可控生长TiO2纳米颗粒,获得MIL-101(Cr)@TiO2复合结构;然后在氮气保护下碳化形成Cr2O3/C@TiO2核壳型复合材料.碳化后,制备的复合材料具有模板的八面体形貌和高比表面积,MIL-101(Cr)中的Cr元素一部分会形成Cr2O3,一部分会掺杂到TiO2中,使得TiO2的吸收边红移.此外,Cr2O3/C@TiO2中的C有利于光的吸收和载流子的分离.这种独特的纳米结构赋予Cr2O3/C@TiO2复合材料优异的光催化性能.在300 W氙灯照射下,该复合材料光解水产氢的速率为446μmol h?1 g?1,约为纯TiO2的4倍.在可见光照射下,Cr2O3/C@TiO2分解水产氢的速率为25.5μmol h?1 g?1.将获得的粉体催化剂制备成光电极发现,Cr2O3/C@TiO2在全幅光照射下的光电流密度在0.4 V(vs.Ag/AgCl)下达到2.3 mA/cm2,约为纯TiO2的3.5倍.Cr2O3/C@TiO2光催化产氢活性的提高一方面是由于Cr掺杂到TiO2中使得其具有可见光响应,另一方面MIL-101碳化获得的Cr2O3/C有效促进了光生载流子的分离.  相似文献   

11.
NiO-loaded NaTaO(3) doped with lanthanum showed a high photocatalytic activity for water splitting into H(2) and O(2) in a stoichiometric amount under UV irradiation. The photocatalytic activity of NiO-loaded NaTaO(3) doped with lanthanum was 9 times higher than that of nondoped NiO-loaded NaTaO(3). The maximum apparent quantum yield of the NiO/NaTaO(3):La photocatalyst was 56% at 270 nm. The factors affecting the highly efficient photocatalytic water splitting were examined by using various characterization techniques. Electron microscope observations revealed that the particle sizes of NaTaO(3):La crystals (0.1-0.7 microm) were smaller than that of the nondoped NaTaO(3) crystal (2-3 microm) and that the ordered surface nanostructure with many characteristic steps was created by the lanthanum doping. The small particle size with a high crystallinity was advantageous to an increase in the probability of the reaction of photogenerated electrons and holes with water molecules toward the recombination. Transmission electron microscope observations and extended X-ray absorption fine structure analyses indicated that NiO cocatalysts were loaded on the edge of the nanostep structure of NaTaO(3):La photocatalysts as ultrafine particles. The H(2) evolution proceeded on the ultrafine NiO particles loaded on the edge while the O(2) evolution occurred at the groove of the nanostep structure. Thus, the reaction sites for H(2) evolution were separated from those of O(2) evolution over the ordered nanostep structure. The small particle size and the ordered surface nanostep structure of the NiO/NaTaO(3):La photocatalyst powder contributed to the highly efficient water splitting into H(2) and O(2).  相似文献   

12.
Environmentally sustainable and selective conversion of methane to valuable chemicals under ambient conditions is pivotal for the development of next-generation photocatalytic technology. However, due to the lack of microscopic knowledge about non-thermal methane conversion, controlling and modulating photocatalytic oxidation processes driven by photogenerated holes remain a challenge. Here, we report novel function of metal cocatalysts to accept photogenerated holes and dominate selectivity of methane oxidation, which is clearly beyond the conventional concept in photocatalysis that the metal cocatalysts loaded on the surfaces of semiconductor photocatalysts mostly capture photogenerated electrons and dominate reduction reactions exclusively. The novel photocatalytic role of metal cocatalysts was verified by operando molecular spectroscopy combined with real-time mass spectrometry for metal-loaded Ga2O3 model photocatalysts under methane and water vapor at ambient temperature and pressure. Our concept of metal cocatalysts that work as active sites for both photocatalytic oxidation and reduction provides a new understanding of photocatalysis and a solid basis for controlling non-thermal redox reactions by metal-cocatalyst engineering.  相似文献   

13.
The photocatalytic activity of (Ga(1-x)Zn(x))(N(1-x)O(x)) loaded with Rh-Cr mixed-oxide (Rh(2-y)Cr(y)O3) nanoparticles for overall water splitting under visible-light irradiation (lambda > 400 nm) is investigated with respect to reaction pH and gas pressure. The photocatalytic performance of the catalyst is found to be strongly dependent on the pH of the reactant solution but largely independent of gas pressure. The present photocatalyst exhibits stable and high photocatalytic activity in an aqueous solution of pH 4.5 for 72 h. The photocatalytic performance is much lower at pH 3.0 and pH 6.2, attributable to corrosion of the cocatalyst and hydrolysis of the catalyst. The dispersion of Rh(2-y)Cr(y)O3 as a cocatalyst on the (Ga(1-x)Zn(x))(N(1-x)O(x)) surface promotes hydrogen evolution, which is considered to be the rate-determining step for overall water splitting on this catalyst.  相似文献   

14.
The structure of Rh-Cr mixed-oxide (Rh(2)(-)(y)Cr(y)O(3)) nanoparticles dispersed on (Ga(1)(-)(x)Zn(x))(N(1)(-)(x)O(x)) is characterized by electron microscopy and X-ray spectroscopy. The Rh(2)(-)(y)Cr(y)O(3) nanoparticle is an efficient cocatalyst for photocatalytic overall water splitting on the (Ga(1)(-)(x)Zn(x))(N(1)(-)(x)O(x)) solid solution and is loaded onto the catalyst by impregnation from an aqueous solution containing Na(3)RhCl(6).2H(2)O and Cr(NO(3))(3).9H(2)O followed by calcination in air. Impregnation of the (Ga(1)(-)(x)Zn(x))(N(1)(-)(x)O(x)) with 1 wt % Rh and 1.5 wt % Cr followed by calcination at 623 K for 1 h provides the highest photocatalytic activity. Structural analyses reveal that the activity of this photocatalyst is strongly dependent on the generation of trivalent Rh-Cr mixed-oxide nanoparticles with optimal composition and distribution.  相似文献   

15.
A new type of photocatalytic reaction that splits water into H2 and O2 was designed using a two-step photoexcitation system composed of an iodate/iodide (IO3-/I-) shuttle redox mediator and two different photocatalysts, one for H2 evolution and the other for O2 evolution. Photocatalytic oxidation of water to O2 and reduction of IO3- to I- selectively proceeded with good efficiencies over TiO2-rutile and Pt-WO3 photocatalysts under UV and visible light irradiations, respectively. The O2 evolution selectively proceeded even in the presence of a considerable amount of I- in the solutions, although the oxidation of water is thermodynamically less favorable than oxidation of I-. Both the adsorption property of IO3- anions and the oxidation property of the photocatalysts are doubtless responsible for the selective oxidation of water. On the other hand, photocatalytic reduction of water to H2 and oxidation of I- to IO3- proceeded over Pt-TiO2-anatase and Pt-SrTiO3:Cr/Ta (codoped with Cr and Ta) photocatalysts under UV and visible light, respectively. The combination of two different photocatalysts results in a stoichiometric evolution of H2 and O2 via the redox cycle of IO3- and I-. The photocatalytic water splitting under visible light irradiation (lambda > 420 nm) was demonstrated by using the Pt-SrTiO3:Cr/Ta, Pt-WO3, and IO3-/I- shuttle redox mediator.  相似文献   

16.
随着环境污染和能源危机的加剧,发展可持续能源迫在眉睫.氢气被认为是可以替代化石能源的最有前途的能源之一,且光催化分解水产氢是一种可以将太阳能转化为氢能的环境友好的方法.n型半导体材料石墨C3N4 (g-C3N4)是一种被广泛用作光催化产氢的吸光材料,然而,纯g-C3N4的光生电子–空穴对会迅速重组,其光催化活性非常低.负载助催化剂能够有效抑制光生载流子的复合,是提高光催化产氢速率的有效方法.助催化剂的作用是将电子和空穴转移给相应的反应物,因此除了助催化剂和光吸收材料之间的能级匹配之外,助催化剂负载的位置也是非常重要的.通过常规方法制备的助催化剂一般是随机分布的,而光化学方法可以将助催化剂沉积在电子和空穴的出口处,从而有利于下一步的光催化反应.使用光化学沉积法,可以通过光化学氧化制备氧化型助催化剂,也可以通过光化学还原制备还原型助催化剂.光化学法是还原贵金属助催化剂的一种常用方法,但是对于制备非贵金属助催化剂来说,它仍然是一种相对新颖的方法.光化学法目前正处于发展阶段,依然缺乏成分调控的手段,因此我们致力于发展相对准确、可控的光沉积方法.H2PO2^–由于其特殊的性质被用于光化学还原过渡金属,然而,在H2PO2^–存在下形成的颗粒非常大且高度结晶,这可能抑制光催化剂的活性.本文设计了一种利用其他磷酸盐光沉积合成光催化剂的新方法,旨在制备可控的弱结晶和小尺寸的助催化剂,以提高产氢活性.首先以不同磷酸盐为原料制备催化剂,发现以H2PO3^–为无机牺牲剂制得的催化剂的光催化产氢活性非常突出,而且制得的催化剂具有无定形结构并且平均尺寸约为10 nm.通过XRD, XPS等多种表征,证实了该条件下得到的产物是Ni(OH)2/g-C3N4.同时,通过设计对照实验,发现在使用H2PO3^–作为牺牲剂, NiCl2作为镍源, g-C3N4作为光吸收材料条件下才能制得效果最好的催化剂.然后对光沉时间,原料添加量,产氢牺牲剂等多组条件进行了优化,得到最优的复合光催化剂Ni(OH)2/g-C3N4(4.36wt%)的光催化产氢速率为13707.86μmol·g^-1·h^-1,甚至高于Pt–4.36wt%/g-C3N4的活性(11210.93μmol·g^-1·h^-1).最后,通过PL, TR-PL, SPV, I-V等多种表征对反应机理进行探究,结果表明,光催化产氢性能提升主要原因是Ni(OH)2的负载可以有效提高光生电荷的分离和转移效率,抑制光生电子对的重组.  相似文献   

17.
In situ photo-deposition of both Pt and CoOx cocatalysts on the facets of poly (triazine imide) (PTI) crystals has been developed for photocatalytic overall water splitting. However, the undesired backward reaction (i.e., water formation) on the noble Pt surface is a spontaneously down-hill process, which restricts their efficiency to run the overall water splitting reaction. Herein, we demonstrate that the efficiency for photocatalytic overall water splitting could be largely promoted by the decoration of Rh/Cr2O3 and CoOx as H2 and O2 evolution cocatalysts, respectively. Results reveal that the dual cocatalysts greatly extract charges from bulk to surface, while the Rh/Cr2O3 cocatalyst dramatically restrains the backward reaction, achieving an apparent quantum efficiency (AQE) of 20.2 % for the photocatalytic overall water splitting reaction.  相似文献   

18.
陈洋  冒国兵  唐亚文  武恒  王刚  张力  刘琪 《催化学报》2021,42(1):225-234,后插45-后插49
随着社会经济的快速发展,能源危机和环境污染问题成为世界各国关注的焦点.通过光催化剂将太阳能用于污染物降解、分解水产氢、CO2还原及有机物合成等领域,是解决上述问题的理想途径.过渡金属氧化物TiO2因其稳定性高、催化活性好、制备简单等优点,被认为是最理想的光催化材料.然而,TiO2带隙较宽、光响应范围窄、光量子效率低等缺点限制了其实际应用.将碳或Cr2O3与TiO2结合形成复合结构已被证明可以有效提升其光催化性能.另一方面,金属离子的掺杂可以有效提高氧化钛的可见光响应.本文利用具有高比表面积的金属有机骨架材料MIL-101(Cr)纳米材料作为模板、镉源和碳源,首先在MIL-101(Cr)表面可控生长TiO2纳米颗粒,获得MIL-101(Cr)@TiO2复合结构;然后在氮气保护下碳化形成Cr2O3/C@TiO2核壳型复合材料.碳化后,制备的复合材料具有模板的八面体形貌和高比表面积,MIL-101(Cr)中的Cr元素一部分会形成Cr2O3,一部分会掺杂到TiO2中,使得TiO2的吸收边红移.此外,Cr2O3/C@TiO2中的C有利于光的吸收和载流子的分离.这种独特的纳米结构赋予Cr2O3/C@TiO2复合材料优异的光催化性能.在300 W氙灯照射下,该复合材料光解水产氢的速率为446μmol h?1 g?1,约为纯TiO2的4倍.在可见光照射下,Cr2O3/C@TiO2分解水产氢的速率为25.5μmol h?1 g?1.将获得的粉体催化剂制备成光电极发现,Cr2O3/C@TiO2在全幅光照射下的光电流密度在0.4 V(vs.Ag/AgCl)下达到2.3 mA/cm2,约为纯TiO2的3.5倍.Cr2O3/C@TiO2光催化产氢活性的提高一方面是由于Cr掺杂到TiO2中使得其具有可见光响应,另一方面MIL-101碳化获得的Cr2O3/C有效促进了光生载流子的分离.  相似文献   

19.
李银银  武倩楠  步琦璟  张凯  林艳红  王德军  邹晓新  谢腾峰 《催化学报》2021,42(5):762-771,中插5-中插6
近年来以Z型机制为转移的光催化体系成微光电化学分解水领域的研究热点.相比较传统的异质结,Z型异质结能够保留具有高氧化能力与高还原能力的位点,从而提高光电化学效率.其中,证明电荷的Z型迁移机制成为研究人员努力的方向,比较有效的证明方法包括自由基捕获、XPS分析和检测还原位点等.对于Z型异质结,界面电场处电荷的迁移行为是至...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号