首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main parameters of the plasma of high-current hydrogen-cesium glow discharges of surface-plasma (planotron and Penning) sources of negative hydrogen ions are determined using contact-free spectroscopic methods and compared for identical discharge current densities. The elemental and charge composition of the plasma is established. The temperature of the hydrogen atoms and the energy of the visible-range radiation of the plasma discharge are measured and estimates of the electron density in the plasma are made. The dynamics of the change in the parameters of the discharge plasma of a Penning source — the densities of hydrogen atoms, cesium atoms and ions, and molybdenum atoms — is tracked during a discharge pulse with spatial resolution along two coordinates. It is observed that cesium atoms and ions and molybdenum atoms are pent up near the cathode surface. Zh. Tekh. Fiz. 68, 32–38 (October 1998)  相似文献   

2.
Using polarization-modulated ellipsometry to monitor adsorbate coverage in-situ, we studied the activated adsorption of filament-heated molecular hydrogen on Cu(111) and subsequent isothermal desorption of hydrogen adatoms. The adsorption is characterized by a zeroth-order kinetic with a constant sticking probability of S0=0.0062 up to θ=0.25, followed by a Langmuir kinetic until the saturation coverage θs=0.5 is reached. The desorption follows a second-order kinetic with an activation energy of 0.63 eV and a pre-exponential factor of 1×109 /s. A pre-adsorbed monolayer of Xe atoms on Cu(111), with a desorption activation energy of 0.25 eV and a pre-exponential factor of 8×1014 /s, efficiently blocks the subsequent adsorption of hot molecular hydrogen, making physisorbedXe useful as templates for spatial patterning of hydrogen adatom density on Cu(111). PACS 68.43.Jk; 78.68.+m; 81.15.-z; 82.40.Np  相似文献   

3.
采用第一性原理方法计算Li(110)、(100)和(111)三个表面方向3至30层自由薄膜的表面能和氢原子的吸附能.随着层厚变化出现量子振荡现象,即量子尺寸效应.重点计算Li(110)表面吸附氢原子吸附高度、吸附氢原子前后费米能级处的态密度和功函数.这些量都随着层厚变化出现明显的量子振荡,且与表面能或吸附能的振荡有明显的相关性.计算发现Li(110)薄膜表面的功函数由于吸附氢原子而降低了约0.9 eV,吸附的氢原子拉低了最外层Li原子和真空层的静电势,导致吸附氢原子后功函数下降.  相似文献   

4.
The adsorption of single hydrogen atoms, investigated by means of cluster calculations, has been compared with the adsorption of hydrogen monolayers on periodic crystals (paper I). From the similarity of the adsorption energy curves we conclude that the (direct and indirect) interactions between adsorbed hydrogen atoms are relatively small up to monolayer coverage. For adsorption on different sites of ideal low index surfaces the stability decreases in the order Atop > Bridge > Centred. For Atop adsorption it increases with a decreasing number of nearest neighbours to the nickel atom in the NiH “surface molecule”, thus leading to especially strong adsorption sites at the edges of a stepped surface and to low stability in the notches. In general, we find that the NinH “surface molecule” with n = 1, 2, 3 or 4 determines the equilibrium positions for H adsorption; the inclusion of one shell of neighbours to the nickel atoms is sufficient to explain the differences in adsorption energy. The Extended Hückel method is not well suited to study dissociative chemisorption of H2, although some qualitative trends are correct.  相似文献   

5.
采用基于密度泛函理论的第一性原理方法研究了氢原子和氢分子在纯铁表面和锰原子掺杂表面的吸附与解离行为.研究结果表明,氢原子可在纯铁(001)表面稳定吸附,吸附能按照顶位,桥位和心位依次增强;而溶质原子锰降低了氢原子距离表面的位置并强化了氢原子的吸附行为.氢分子在纯铁表面的吸附解离行为取决于氢分子距离模型表面的初始距离和初始空间构型.氢分子平行于纯铁(001)表面时,距离心位1.2?发生解离,而桥位、顶位均不会发生解离;氢分子垂直放置时,距离桥位0.6?、顶位1.0?发生解离,心位不会发生解离.氢分子平行于锰掺杂纯铁(001)表面时,距离桥位0.6?、顶位0.7?、心位1.2?发生解离;氢分子垂直放置时,距离桥位、心位0.8?发生解离,而顶位放置氢分子不发生解离.归纳可知,锰溶质原子掺杂会增加铁基体表面氢原子和氢分子的吸附作用并促进氢分子发生分解.  相似文献   

6.
Irradiation of solids produces a microscopic nonequilibrium state in which the vibrational energy distribution function of the atoms deviates from the thermodynamically equilibrium function. Expressions are obtained for the nonequilibrium distribution function and for the frequencies of activational transitions of atoms out of a potential well. It is shown that the radiation stimulation of diffusion processes involves a deviation of the temperature dependences of the frequencies of transitions of the atoms out of positions of equilibrium from the Arrhenius law. Under subthreshold irradiation conditions the rate of diffusion processes is higher for atoms whose vibrations thermalize over long times and depends linearly on the irradiation intensity. Under above-threshold irradiation conditions the characteristics of cascade regions in solids — their sizes and the vibrational excitation energy of the atoms — can be determined by comparing the computed and experimental temperature dependences of the diffusion coefficient. Zh. Tekh. Fiz. 68, 67–72 (August 1998)  相似文献   

7.
罗强  唐斌  张智  冉曾令 《物理学报》2013,62(7):77101-077101
基于密度泛函理论第一性原理, 在广义梯度近似下, 研究了表面覆盖度为0.25 ML (monolayer)时硫化氢分子在Fe(100)面吸附的结构和电子性质, 并与单个硫原子吸附结果进行了对比. 结果表明: 硫化氢分子吸附在B2位吸附能最小为-1.23 eV, 最稳定, B1位吸附能最大为-0.01 eV, 最不稳定; 并对硫化氢分子在B1位和B2位吸附后的电子态密度进行了分析, 也表明了吸附在B2位稳定, 且吸附在B2位后硫化氢分子几何结构变化不大; 将硫化氢中硫原子吸附与单个硫原子吸附的电子性质进行了比较, 发现前者吸附作用非常微弱; 同时对吸附后的Fe(100)面进行了对比, 单个硫原子吸附的Fe(100)面电子态密度出现了一系列峰值且离散分布, 生成了硫化亚铁, 表明在硫化氢环境下, 主要是硫化氢析出的硫原子发生了吸附. 关键词: 第一性原理 Fe(100)表面 吸附能 硫化氢  相似文献   

8.
采用基于密度泛函理论(DFT)的平面波赝势(PW-PP)方法,研究了ZrMn2(110)清洁表面结构和氢原子在表面的吸附。弛豫表面结构的计算结果表明表面结构的最表层为曲面,且表面结构的原子间隙变小。由1Zr2Mn原子组成的空位是氢原子吸附在ZrMn2(110)表面的最佳吸附位,吸附能为3.352 eV,氢原子吸附后离表面的距离为1.140 Å。Mulliken电荷布居分析表明吸附的氢原子与表面原子的相互作用主要是接近氢原子的第一层原子与氢原子的相互作用。过渡态计算表明被吸附的氢原子进入表面内部需克服的最大势垒为1.033 eV。  相似文献   

9.
《Surface science》1986,172(1):174-182
The room temperature adsorption of CF3COOH, CH3COOH and CO on cleaved GaAs(110) surfaces has been studied by vibrational electron energy loss spectroscopy (HRELS), second derivative electron energy spectroscopy (ELS) and electron diffraction (LEED). CO does not adsorb on the GaAs surfaces in measurable quantities. Acetic acid CH3COOH is dissociatively adsorbed as an acetate bonded to Ga surface atoms with the split-off hydrogen on As surface atoms. The fluorated acid CF3COOH decomposes via an acetate intermediate CF3COO into active CF3 groups which adsorb on Ga surface atoms. The split-off hydrogen sticks to surface As atoms while the generated CO2 desorbs. The adsorption models are consistent with the LEED c(2×2) superstructure observed after saturated adsorption of both acids.  相似文献   

10.
In the present work, the mechanical properties of graphyne, a class of graphene allotropes with carbon triple bonds, subjected to the hydrogen chemisorption are studied using a first-principles density functional approach. Two configurations for the maximum of hydrogen adsorption are considered: (I) adsorption of hydrogen atoms on carbon atoms at the two opposite sides of graphyne sheet and (II) adsorption of hydrogen atoms on carbon atoms at the same side of graphyne sheet. Formation energy for hydrogenated graphyne (H-graphyne) corresponding to these states of adsorption is calculated and it is indicated that state (I) is more stable than state (II). Density functional calculations within the generalized gradient approximation (GGA) in the harmonic elastic deformation range are performed to obtain the elastic constants of graphyne and H-graphyne in state (I). This study shows that H-graphyne has an in-plane stiffness of 125 N/m and a Poisson's ratio of 0.23. It is observed that the in-plane stiffness of H-graphyne is lower than that of graphyne. This clearly reveals the destructive effect of hydrogen adsorption on the mechanical properties of graphyne. The results of this paper are helpful for the design of future nanodevices in which H-graphyne acts as their basic element.  相似文献   

11.
The chemisorptions of hydrogen on aluminum arsenide clusters are studied with density functional theory (DFT). The on-top site is identified to be the most favorable chemisorptions site for hydrogen. And the Al-top site is the preferred one in the most cases for one hydrogen adsorption in (AlAs) n (n = 2, 5, 6, 8–15) clusters. Top on the neighboring Al and As atoms ground-state structures are found for two hydrogen adsorption on (AlAs) n except for (AlAs)2 cluster. The Al–As bond lengths decrease generally as the size of the cluster increases. And there is a slight increase in the mean Al–As bond lengths after H adsorption on the lowest-energy sites of the most AlAs clusters. In general, the binding energy of H and 2H are both found to decrease with an increase in the cluster size. And the result shows that large binding energies (BE) of a single hydrogen atom on small AlAs clusters and large highest occupied and lowest unoccupied molecular-orbital gaps for (AlAs)H and (AlAs)3H make these species behaving like magic clusters. Calculations on two hydrogen atoms on (AlAs) n clusters show large BE for (AlAs) n H2 with an odd number of n. The stability of these complexes is further studied from the fragmentation energies. (AlAs)7H2 and (AlAs)9H2 clusters are again suggested to be the stable clusters. On the other hand both the fragmentation energy and the binding energy for (AlAs)13H are close to the lowest values.  相似文献   

12.
A. Nojima 《Surface science》2007,601(14):3003-3011
We have used density functional theory to investigate hydrogen adsorption and diffusion on a W(1 1 0) surface. Hydrogen adsorption structures were examined from low coverage to one monolayer, and a threefold hollow site was found to be the most stable site at all coverages. In contrast to previous assertions, the work function decrease is not due to electron transfer from the hydrogen atoms to the W surface, but due to electron depletion at the vacuum region above the hydrogen atoms. Hydrogen atoms can diffuse via short-bridge sites and long-bridge sites at a coverage of θ = 1.0. Although the calculated activation energy for hydrogen diffusion via a short-bridge site is as small as 0.05 eV, field emission microscope experiments have shown that the activation energy for hydrogen diffusion is about 0.20 eV, which agrees fairly well with our calculated value of the activation energy via a long-bridge site. This discrepancy can be related to hydrogen delocalization on the W(1 1 0) surface, which has been suggested by electron energy loss spectroscopy experiments.  相似文献   

13.
The adsorption of hydrogen molecules on titanium-decorated (Ti-decorated) single-layer and bilayer graphenes is studied using density functional theory (DFT) with the relativistic effect. Both the local density approximation (LDA) and the generalized gradient approximation (GGA) are used for obtaining the region of the adsorption energy of H2 molecules on Ti-decorated graphene. We find that a graphene layer with titanium (Ti) atoms adsorbed on both sides can store hydrogen up to 9.51 wt% with average adsorption energy in a range from -0.170 eV to 0.518 eV. Based on the adsorption energy criterion, we find that chemisorption is predominant for H2 molecules when the concentration of H2 molecules absorbed is low while physisorption is predominant when the concentration is high. The computation results for the bilayer graphene decorated with Ti atoms show that the lower carbon layer makes no contribution to hydrogen adsorption.  相似文献   

14.
In this work a comparative analysis between different Pt-Ru(111) surface models and pure Pt(111) surface is presented. Some aspects of the electronic structure of the surfaces and hydrogen adsorption are analysed based on density functional theory calculations. The hydrogen adsorption energy is significantly reduced when Ru is present on the surface. The substitution of Pt atoms by Ru atoms reinforce the Pt-H bond while the metal-metal bond is strongly modified, making the system less stable.  相似文献   

15.
P. A. Gravil  H. Toulhoat   《Surface science》1999,430(1-3):176-191
First principles calculations for the coadsorption of hydrogen with sulphur and chlorine on Pd(111) are presented. Individually, both sulphur and chlorine poison hydrogen adsorption, sulphur being the more efficient poison. The observed sulphur poisoning is a structural effect. The adsorption energy decreases and the diffusion barrier increases for hydrogen atoms in the vicinity of sulphur adatoms. A sulphur coverage of 0.33 ML is sufficient to completely poison hydrogen adsorption on Pd(111). The presence of chlorine adatoms on the sulphur-poisoned surface is found to stabilise localised hydrogen adsorption. The possible promotional effects of chlorine on sulphur-poisoned catalysts are discussed.  相似文献   

16.
Based on density-functional theory, we find that B-doped graphene significantly enhances the Be adsorption energy and prevent Be atoms from clustering. The complex of Be adsorbed on B-doped graphene can serve as a high-capacity hydrogen storage medium: the hydrogen storage capacity (HSC) can reach up to 15.1 wt% with average adsorption energy ?0.298 eV/H2 for double-sided adsorption. It has exceeded the target specified by US Department of Energy with HSC of 9 wt% and a binding energy of ?0.2 to ?0.6 eV/H2 at near-ambient conditions. By analyzing the projected electronic density of states of the adsorbed system, we show that the high HSC is due to the change of electron distribution of H2 molecules and a graphene system decorated with B and Be atoms.  相似文献   

17.
本文采用基于密度泛函理论(DFT)的第一原理赝势平面波(PW-PP)方法,对氢分子在Mg2Ni(010)面的吸附与分解进行了研究,我们发现氢分子以Hor1的方式吸附在表面层Ni原子的顶位时吸附能最高,为0.6769eV,这表明氢分子最可能以Hor1的方式吸附在表面层Ni原子的顶位,此时氢分子跟表面的距离( )和氢分子的键长( )分别为1.6286Å和0.9174Å. 在分子吸附的基础上计算了氢分子沿着选取的反应路径分解时的反应势垒,发现要使氢分子分解需要0.2778eV的活化能,而氢分子分解时的吸附能为0.8390eV,分解后两个氢原子的距离为3.1712Å. 在分子吸附和分解吸附时氢原子跟正下方的Ni原子都有较强的相互作用,氢原子所得到的电子主要来自氢分子正下方的Ni原子.  相似文献   

18.
Complexes of zigzag-type carbon nanotubes (CNTs) with transition metal atoms, scandium and titanium, were studied. It was demonstrated that the energy of binding of both atoms with a carbon surface decreases whereas the rate of diffusion along the surface increases with increasing nanotube diameter. The rate constant of migration of scandium atoms over a CNT surface are several orders of magnitude higher than that for titanium atoms, because the CNT surface—Sc atom binding energy is substantially lower.  相似文献   

19.
The adsorption of single gallium atoms on the inner walls of single-walled carbon nanotubes with hydrogen/oxygen-saturated monovacancies are studied by using the density functional theory method. When the monovacancy is saturated by the hydrogen or oxygen atom, the gallium atom prefers to adsorb on the top of the center of a pentagon ring, and the binding energy between the gallium atom and carbon nanotube is significantly lower as compared to the case with a pure monovacancy. In addition, the results of the density of states show that the states originating from the adsorbed gallium atoms shift toward lower energy when the carbon atoms with dangling bonds are saturated by hydrogen or oxygen atoms. Meanwhile, these states have no contribution to the states near the Fermi levels.  相似文献   

20.
The adsorption of H2 and D2 has been studied on clean and K-promoted Pd(100) surfaces using thermal desorption, work function changes, ultraviolet photoelectron and Auger spectroscopy. The potassium adlayer significantly lowers the sticking coefficient (from 0.6 to 0.06 at θk = 0.2), and the uptake of hydrogen, but increases the desorption energy for H2 desorption. Calculation showed that each potassium adatom blocks approximately 4–5 adsorption sites for H2 adsorption. Atomization of hydrogen led to an increase of hydrogen uptake. The adsorption of potassium on the H-covered surface caused a significant decrease in the amount of hydrogen adsorbed on the surface (as indicated by less desorbing hydrogen below 500 K) and promoted the dissolution of H atoms into the bulk of Pd. The dissolved hydrogen was released only above 600–650 K. In the interpetation of the results the extended charge transfer from K-dosed Pd to the adsorbed H atoms and the direct interaction between adsorbed H and K adatoms are taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号