首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We investigate the surface-directed phase separation of spin-coated polystyrene/poly(methyl methacrylate) (PS/PMMA) blends on prepatterned octadecyltrichlorosilane (OTS)-glass substrates under various experimental conditions. As a result of tandem processes of spinodal decomposition and selective wetting of polymer components during spin-coating, low-energy OTS stripes and high-energy glass surfaces laterally arrange the phase-separated polymers according to the chemical pattern on the substrate. Optimal pattern replication was achieved when the length scale of phase separation, controlled via the polymer concentration of the spin-coating solution, matched the smallest feature dimension in a striped chemical pattern possessing two alternating distances between stripes. It was also shown that polymer blend patterns were most closely registered with the underlying substrate when the PS/PMMA composition ratio (30/70, w/w) matched the areal fraction of OTS on the glass surface (~30%). The influence of solvents demonstrated that a solvent with a relatively low volatility, such toluene, was required for patterning so that domain feature sizes were able to coarsen to the size of the patterned features before film vitrification. As well, we showed that the technique and optimized conditions developed in this study could be applied to pattern photoluminescent CdS quantum dots into microscale arrays of parallel lines via spin-coating onto transparent OTS-glass substrates.  相似文献   

2.
In this study, we developed a liquid crystal (LC)-based detection method for polymer films synthesized on solid surfaces. A dark to bright transition in the optical appearance of nematic 4-cyano-4′-pentylbiphenyl (5CB) was observed after transferring a poly(methyl methacrylate) (PMMA) film onto a glass substrate functionalized with n-octyltrichlorosilane (OTS). This phenomenon indicates an orientational transition of 5CB from a homeotropic to a planar-random state. The optical response of 5CB was then evaluated directly through polymerization reactions on the OTS-functionalized glass substrate. Polymer films of PMMA, poly(glycidyl methacrylate) (PGMA), and poly(dimethylsiloxane) (PDMS) were synthesized on OTS surfaces covered with their reaction mixtures. All polymer films displayed bright signals of 5CB, which corresponded to the planar-random orientation of LCs. However, no change in orientation was observed for the control experiments. We confirmed the formation of polymer films on the OTS surface using atomic force microscopy. Overall, our results suggest that LCs can be used to construct optical monitoring systems for the product of polymerization reactions.
Figure
?  相似文献   

3.
Summary: Binary symmetric diblock copolymer blends, that is, low‐molecular‐weight poly(styrene‐block‐methyl methacrylate) (PS‐b‐PMMA) and high‐molecular‐weight poly(styrene‐block‐methacrylate) (PS‐b‐PMA), self‐assemble on silicon substrates to form structures with highly ordered nanoholes in thin films. As a result of the chemically similar structure of the PMA and the PMMA block, the PMMA chain penetrates through the large PMA block that absorbs preferentially on the polar silicon substrate. This results in the formation of nanoholes in the PS continuous matrix.

An atomic force microscopy image of the thin film obtained from the blend of low‐molecular‐weight PS‐b‐PMMA and high‐molecular‐weight PS‐b‐PMA. The regular array of nanoholes in the films surface is clearly visible.  相似文献   


4.
A combination of optical and atomic force microscopy (AFM) is used for probing changes in the morphology of polymer blend films that accompany phase ordering processes (phase separation and crystallization). The phase separation morphology of a “model” semi‐crystalline (polyethyleneoxide or PEO) and amorphous (polymethylmethacrylate or PMMA) polymer blend film is compared to previous observations on binary amorphous polymer blend films of polystyrene (PS) and polyvinylmethylether (PVME). The phase separation patterns are found to be similar except that crystallization of the film at high PEO concentrations obscures the observation of phase separation. The influence of film defects (e.g., scratches) and clay filler particles on the structure of the semi‐crystalline and amorphous polymer films is also investigated.  相似文献   

5.
Immiscible polymer systems are known to form various kinds of phase‐separated structures capable of producing self‐assembled patterns at the surface. In this study, different surface characterization methods were utilized to study the surface morphology and composition produced after annealing thin polymer films. Two different SIMS techniques—static time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) and dynamic nano‐SIMS—were used, complemented by x‐ray photoelectron spectrometry (XPS) and atomic force microscopy (AFM). Thin films (spin‐coated onto silicon wafers) of polystyrene (PS)–poly(methyl methacrylate) (PMMA) symmetric blends and diblock copolymers of similar molecular weight were investigated. Surface enrichment by PS was found on all as‐cast samples. The samples were annealed at 160 °C for different time periods, after which the blend and the copolymer films exhibited opposite behaviour as seen by ToF‐SIMS and XPS. The annealed blend surface presented an increase in the PMMA concentration whereas that of copolymers showed a decrease in PMMA concentration compared with the as‐cast sample. For blends, the nano‐SIMS as well as AFM images revealed the formation of phase‐separated domains at the surface. The composition information obtained from ToF‐SIMS and XPS, as well as the surface mapping by nano‐SIMS and AFM, allowed us to conclude that PS formed phase separated droplet‐like domains on a thin PMMA matrix on annealing. The three‐dimensional nano‐SIMS images showed that the PS droplets were supported inside a rim of PMMA and that these droplets continued from the surface like columnar rods into the film until the substrate interface. In the case of annealed copolymer samples, the AFM images revealed topographical features resembling droplet‐like domains on the surface but there was no phase difference between the domains and the matrix. In the case of copolymers, owing to the covalent bonding between the blocks, complete phase separation was not possible. The three‐dimensional nano‐SIMS images showed domain structures in the form of striations inside the film, which were not continuous until the substrate interface. Information from the different techniques was required to gain an accurate view of the surface composition and topographical changes that have occurred under the annealing conditions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
聚合物三维微图案加工的转移微模塑新方法   总被引:1,自引:0,他引:1  
光刻蚀技术是微电子加工技术中最成功的一种,但由于受到光学衍射等的限制,100nm是光刻蚀的极限,为此人们探索了许多先进的刻蚀技术,如超紫外线刻蚀(EUV)、软X射线刻蚀、电子束刻蚀和聚焦离子束刻蚀(FIB)等,可制作尺寸小于100nm的图形,但普遍存在加工速度慢及成本高等缺点.  相似文献   

7.
X-ray photoemission electron microscopy using synchrotron radiation illumination has been used to measure the spatial distributions of albumin on a phase-segregated polystyrene/poly(methyl methacrylate) (PS/PMMA) polymer thin film following adsorption from unbuffered, deionized aqueous solutions under a range of solution concentrations and exposure times. Chemical mapping of the albumin, PS, and PMMA shows that the distribution of albumin on different adsorption sites (PS, PMMA, and the interface between the PS and PMMA domains) changes depending on the concentration of the albumin solution and the exposure time. The preferred sites of absorption at low concentration and short exposure are the PS/PMMA interfaces. Albumin shows a stronger preference for the PS domains than the PMMA domains. The exposure-time dependence suggests that a dynamic equilibrium between albumin in solution and adsorbed on PS domains is established in a shorter time than is required for equilibrating albumin between the solution and the PMMA domains. The explanation of these preferences in terms of possible adsorption mechanisms is discussed.  相似文献   

8.
Morphology, thermal and rheological properties of polymer‐organoclay composites prepared by melt‐blending of polystyrene (PS), poly(methyl methacrylate) (PMMA), and PS/PMMA blends with Cloisite® organoclays were examined by transmission electron microscopy, small‐angle X‐ray scattering, secondary ion mass spectroscopy, differential scanning calorimetry, and rheological techniques. Organoclay particles were finely dispersed and predominantly delaminated in PMMA‐clay composites, whereas organoclays formed micrometer‐sized aggregates in PS‐clay composites. In PS/PMMA blends, the majority of clay particles was concentrated in the PMMA phase and in the interfacial region between PS and PMMA. Although incompatible PS/PMMA blends remained phase‐separated after being melt‐blended with organoclays, the addition of organoclays resulted in a drastic reduction in the average microdomain sizes (from 1–1.5 μm to ca. 300–500 nm), indicating that organoclays partially compatibilized the immiscible PS/PMMA blends. The effect of surfactant (di‐methyl di‐octadecyl‐ammonia chloride), used in the preparation of organoclays, on the PS/PMMA miscibility was also investigated. The free surfactant was more compatible with PMMA than with PS; the surfactant was concentrated in PMMA and in the interfacial region of the blends. The microdomain size reduction resulting from the addition of organoclays was definitely more significant than that caused by adding the same amount of free surfactant without clay. The effect of organoclays on the rheological properties was insignificant in all tested systems, suggesting weak interactions between the clay particles and the polymer matrix. In the PS system, PMMA, and organoclay the extent of clay exfoliation and the resultant properties are controlled by the compatibility between the polymer matrix and the surfactant rather than by interactions between the polymer and the clay surface. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 44–54, 2003  相似文献   

9.
The preparation and characterization of polymer blends with structured natural rubber (NR)-based latex particles are presented. By a semicontinuous emulsion polymerization process, a natural rubber latex (prevulcanized or not) was coated with a shell of crosslinked polymethylmethacrylate (PMMA) or polystyrene (PS). Furthermore, core–shell latexes based on a natural rubber/crosslinked PS latex semi-interpenetrating network were synthesized in a batch process. These structured particles were incorporated as impact modifiers into a brittle polymer matrix using a Werner & Pfleiderer twin screw extruder. The mechanical properties of PS and PMMA blends with a series of the prepared latexes were investigated. In the case of PMMA blends, relatively simple core (NR)–shell (crosslinked PMMA) particles improved the mechanical properties of PMMA most effectively. An intermediate PS layer between the core and the shell or a natural rubber core with PS subinclusions allowed the E-modulus to be adjusted. The situation was different with the PS blends. Only core–shell particles based on NR-crosslinked PS latex semi-interpenetrating networks could effectively toughen PS. It appears that microdomains in the rubber phase allowed a modification of the crazing behavior. These inclusions were observed inside the NR particles by transmission electron microscopy. Transmission electron photomicrographs of PS and PMMA blends also revealed intact and well-dispersed particles. Scanning electron microscopy of fracture surfaces allowed us to distinguish PS blends reinforced with latex semi-interpenetrating network-based particles from blends with all other types of particles.  相似文献   

10.
Bioactive protein patterns and microarrays achieved by selective localization of biomolecules find various applications in biosensors, bio-microelectromechanical systems (bio-MEMS), and in basic protein studies. In this paper we describe simple photochemical methods to fabricate two-dimensional patterns on a Novolac A derivative polymer (SU-8) and, subsequently, their functionalization with biomolecules. Anthraquinone (AQ) derivatives are used to chemically modify and pattern SU-8 surfaces. Features as small as 20 mum are obtained when using uncollimated light. The X-Y spatial resolution of micropatterned AQ molecules is improved to 1.5 mum when a collimated light source is used. This micropatterning process will be important for the functionalization of MEMS-based biosensors. The method saves several processing steps and can be integrated in cleanroom fabrication thus avoiding contamination of the sensor surfaces.  相似文献   

11.
The morphology of a thin film was studied for a binary mixture of asymmetric PS‐b‐PMMA block copolymers on a flat silicon wafer coated with 50 nm thick silicon oxide. AFM and TEM reveal that the PMMA cylinders orient perpendicular to the substrate by tuning the film thickness. Furthermore, grating substrates with different width and depth are used to guide the alignment of the perpendicular cylinders. As a result, an array of highly ordered, hexagonally packed PMMA cylinders in the PS matrix with a domain spacing of less than 25 nm has been produced.

  相似文献   


12.
The organization of adsorbed type I collagen layers was examined on a series of polystyrene (PS)/poly(methyl methacrylate) (PMMA) heterogeneous surfaces obtained by phase separation in thin films. These thin films were prepared by spin coating from solutions in either dioxane or toluene of PS and PMMA in different proportions. Their morphology was unraveled combining the information coming from X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and water contact angle measurements. Substrates with PMMA inclusions in a PS matrix and, conversely, substrates with PS inclusions in a PMMA matrix were prepared, the inclusions being either under the form of pits or islands, with diameters in the submicrometer range. The organization of collagen layers obtained by adsorption on these surfaces was then investigated. On pure PMMA, the layer was quite smooth with assemblies of a few collagen molecules, while bigger assemblies were found on pure PS. On the heterogeneous surfaces, it appeared clearly that the diameter and length of collagen assemblies was modulated by the size and surface coverage of the PS domains. If the PS domains, either surrounding or surrounded by the PMMA phase, were above 600 nm wide, a heterogeneous distribution of collagen was found, in agreement with observations made on pure polymers. Otherwise, fibrils could be formed, that were longer compared to those observed on pure polymers. Additionally, the surface nitrogen content determined by XPS, which is linked to the protein adsorbed amount, increased roughly linearly with the PS surface fraction, whatever the size of PS domains, suggesting that adsorbed collagen amount on heterogeneous PS/PMMA surfaces is a combination of that observed on the pure polymers. This work thus shows that PS/PMMA surface heterogeneities can govern collagen organization. This opens the way to a better control of collagen supramolecular organization at interfaces, which could in turn allow cell-material interactions to be tailored.  相似文献   

13.
研究了PS PMMA的共混物溶液溶剂蒸发成膜时的基板界面效应 .利用扫描电子显微镜 (SEM)研究了PS PMMA(5 5 ) (W W) THF高分子共混物溶液在不同基板上通过溶剂挥发成膜的相形态结构 .通过FTIR及ATR FTIR检测了共混物薄膜及其表面的共混组成 .研究结果表明 ,成膜基板对高分子共混物溶液成膜后的相形态有很重要的影响 .控制共混物溶液体系成膜过程中的动力学因素 ,可以调控出所设想的各种复杂的相结构形态  相似文献   

14.
We investigate effects of two spin-coating parameters, relative humidity (5% < or = RH < or = 80%) in ambient atmosphere and water content (3 wt % < or = f(H2O) < or = 20 wt %) in solution (rich in tetrahydrofuran), on the structure of breath figures (BF) formed in spin-cast films of polar poly(methyl methacrylate) (PMMA) and PMMA mixed with nonpolar polystyrene (PS). Film morphologies, examined with atomic and lateral force microscopy, are analyzed with integral geometry analysis to yield morphological BF measures. In PMMA, water added to solution has much stronger impact than that from moisture on formed BFs, which could be ordered (with conformational entropy S approximately 0.9-1.0). In PMMA/PS, BFs decorate exclusively polar PMMA domains, resulting in morphologies with two length scales (sub-micrometer BFs and domains >10 microm). This suggests a novel strategy for herarchic structure formation in multicomponent polymer films. In PS/PMMA, BFs are better developed than in pure PMMA spin-coated in identical conditions. These observations show that the air boundary layer facing the spin-cast polymer film (region) is more important than the ambient atmosphere.  相似文献   

15.
Combining inkjet printing and atom-transfer radical polymerization (ATRP) provides a straightforward and versatile method for producing patterned polymer surfaces that may serve as platforms for a variety of applications. We report the use of drop-on-demand technology to print binary chemical gradients and simple patterns onto solid substrates and, by using surface-confined ATRP, amplify these patterns and gradients. Chemically graded monolayers prepared by inkjet printing dodecanethiol and backfilling with 11-mercaptoundecanol showed continuous changes in the water contact angle along the gradient. These samples also exhibited a distinct change in the intensity of methyl group and C-O stretching modes along the gradient. Graded or patterned polymer layers were produced by growing, with ATRP, tethered poly(methyl methacrylate) (PMMA) layers from gradient or patterned printed monolayers that contained a bromo-capped initiator. Atomic force microscopy and optical microscopy confirmed that the PMMA layers amplified the underlying printed initiator layer with remarkable fidelity.  相似文献   

16.
A simple technique for patterning proteins utilizing dewetted polystyrene (PS) droplets is demonstrated. A polystyrene thin film was spin coated on a poly(ethylene glycol) (PEG) silane-modified surface. As the PS film dewets from the surface, upon annealing, to form droplets, the PEG-silane-modified surface is exposed, which retains its capability to resist protein adsorption, and the PS droplets allow the selective adsorption of proteins. In contrast to the undewetted flat PS film, the droplet surface had a greater amount of adsorbed proteins. Atomic force microscopy scans reveal that the roughness of the droplet surface is higher, and a multilayer of proteins results on the droplet surface. Moreover, micro- and nanoscale droplet patterns can easily be achieved by tuning the thickness of PS thin films. Because dewetting approaches for generating ordered dewetting droplets have been successfully generated by others, those approaches could be easily combined with this technique to fabricate ordered protein patterns.  相似文献   

17.
Here we report the rapid and convenient patterning of proteins on porous polymer film using the inverse microemulsion approach. Following this method, proteins, which were dissolved in water, were transferred into dichloromethane solution of polymers through the formation of inverse microemulsion by mixing the two solutions. The protein-containing microemulsion droplets accumulated automatically into large and stable ones on the surface of organic solution casting on solid substrates, and formed tightly packed microemulsion droplet arrays driven by surface tension. With the evaporation of organic solvent and water, the microemulsion droplet arrays, which act as the template, turn to honeycomb patterned pores bearing proteins in them. The formed protein patterns can be locally applied for the detection of other proteins through specific recognition. The generality and reproducibility for the formation of BSA/PS microporous film and protein patterning by using different polymers and solvents were demonstrated by investigating surfactant addition, polymer and solvent types, and casting volume on the morphology of the microporous films. A preliminary mechanism for the protein patterning is discussed based on the analysis of the experimental results.  相似文献   

18.
Active protein micropatterns and microarrays made by selective localization are popular candidates for medical diagnostics, such as biosensors, bioMEMS, and basic protein studies. In this paper, we present a simple fabrication process of thick (approximately 20 microm) protein micropatterning using capillary force lithography with bifunctional sol-gel hybrid materials. Because bifunctional sol-gel hybrid material can have both an amine function for linking with protein and a methacryl function for photocuring, proteins such as streptavidin can be immobilized directly on thick bifunctional sol-gel hybrid micropatterns. Another advantage of the bifunctional sol-gel hybrid materials is the high selective stability of the amine group on bifunctional sol-gel hybrid patterns. Because amine function is regularly contained in each siloxane oligomers, immobilizing sites for streptavidin are widely distributed on the surface of thick hybrid micropatterns. The micropatterning processes of active proteins using efficient bifunctional sol-gel hybrid materials will be useful for the development of future bioengineered systems because they can save several processing steps and reduce costs.  相似文献   

19.
Polymer/nanoparticle composite films are receiving growing attention thanks to their potential for application in ultra-thin electronic and optical devices. Polymer blend demixing has been shown to be a suitable technique for the structuring of polymer thin films and the patterning of nanoparticles (NP) within them. In this work we show that the morphology of thin polymer films made by spin-casting a polymer blend solution containing NP fillers on a surface depends strongly on the concentration of NP fillers. More specifically, polystyrene/polymethylmethacrylate (PS/PMMA) films formed from a toluene solution, and which demix following a nucleation and growth mechanism, were studied. It was found that both the height and the surface density of PMMA domains increased as the concentration of CoPt:Cu NPs in the film was increased. We find that similar effects are induced in a NP-free PS/PMMA demixed film upon increasing the molecular weight of the PS molecules. This suggests that under certain conditions the NPs and the polymer molecules in the blend do not behave as separate species but form aggregates.  相似文献   

20.
Electrospun core–shell fibers have great potentials in many areas, such as tissue engineering, drug delivery, and organic solar cells. Although many core–shell fibers have been prepared and studied, the morphology transformation of core–shell fibers have been rarely studied. In this work, the morphology evolution of electrospun core–shell polymer fibers driven by the Plateau–Rayleigh instability is investigated. Polystyrene/poly(methyl methacrylate) (PS/PMMA) core–shell fibers are first prepared by using blend solutions and a single axial electrospinning setup. After PS/PMMA core–shell fibers are annealed on a PS film, the fibers undulate and sink into the polymer film, forming core–shell hemispheres. The evolution process, which can be observed in situ by optical microscopy, is mainly driven by achieving lower surface and interfacial energies. The morphologies of the transformed structures can be confirmed by a selective removal technique, and polymer microbowls can be obtained.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号