首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we have extended our previous high resolution study of the vacuum ultraviolet emission spectrum of the D2 molecule [M. Roudjane, et al. J. Chem. Phys. 125, 214305 (2006)] up to 124.2 nm in order to investigate the B' 1Sigmau+-->X 1Sigmag+ band system. The analysis of the spectrum has been carried out by means of a complex spectrum visual identification code IDEN [V. I. Azarov, Phys. Scr. 44, 528 (1991); 48, 656, (1993)] and supported by theoretical calculations using ab initio data [L. Wolniewicz, J. Chem. Phys. 103, 1792 (1995); 99, 1851 (1993); G. Staszewska and L. Wolniewicz, J. Mol. Spectrosc. 212, 208 (2002); L. Wolniewicz and G. Staszewska, 220, 45 (2003)] which provided level energies and transition probabilities. More than 1480 new emission lines have been observed and 109 bands belonging to the B' 1Sigmau+-->X 1Sigmag+ system have been identified between 84.1 and 121.6 nm. Except for the upsilon'-0 bands that were reported in absorption [I. Dabrowski and G. Herzberg, Can. J. Phys. 52, 1110 (1974)], all the upsilon'-upsilon" bands are reported here for the first time. The analysis led to the determination of 111 rovibronic energy levels in the B' 1Sigmau+ state, of which 31 with higher rotational numbers J are new. Observed perturbations are accounted for through a set of coupled equations involving the four excited electronic states B 1Sigmau+, B' 1Sigmau+, C 1Piu, and D 1Piu and including nonadiabatic couplings. The solution of this set provides the percent contribution of these four states to each of the observed rovibronic level.  相似文献   

2.
A two-dimensional fluorescence (excitation/emission) spectrum of C2 produced in an acetylene discharge was used to identify and separate emission bands from the d (3)Pi(g)<--c (3)Sigma(u) (+) and d (3)Pi(g)<--a (3)Pi(u) excitations. Rotationally resolved excitation spectra of the (4<--1), (5<--1), (5<--2), and (7<--3) bands in the d (3)Pi(g)<--c (3)Sigma(u) (+) system of C2 were observed by laser-induced fluorescence spectroscopy. The molecular constants of each vibrational level, determined from rotational analysis, were used to calculate the spectroscopic constants of the c (3)Sigma(u) (+) state. The principal molecular constants for the c (3)Sigma(u) (+) state are B(e)=1.9319(19) cm(-1), alpha(e)=0.018 55(69) cm(-1), omega(e)=2061.9 cm(-1), omega(e)x(e)=14.84 cm(-1), and T(0)(c-a)=8662.925(3) cm(-1). We report also the first experimental observations of dispersed fluorescence from the d (3)Pi(g) state to the c (3)Sigma(u) (+) state, namely, d (3)Pi(g)(v=3)-->c (3)Sigma(u) (+)(v=0,1).  相似文献   

3.
Fluorescence excitation spectra produced through photoexcitation of N(2) using synchrotron radiation in the spectral region between 80 and 100 nm have been studied. Two broadband detectors were employed to simultaneously monitor fluorescence in the 115-320 nm and 300-700 nm regions, respectively. The peaks in the vacuum ultraviolet fluorescence excitation spectra are found to correspond to excitation of absorption transitions from the ground electronic state to the b (1)Pi(u), b(') (1)Sigma(u) (+), c(n) (1)Pi(u) (with n=4-8), c(n) (') (1)Sigma(u) (+) (with n=5-9), and c(4) (')(v('))(1)Sigma(u) (+) (with v(')=0-8) states of N(2). The relative fluorescence production cross sections for the observed peaks are determined. No fluorescence has been produced through excitation of the most dominating absorption features of the b-X transition except for the (1,0), (5,0), (6,0), and (7,0) bands, in excellent agreement with recent lifetime measurements and theoretical calculations. Fluorescence peaks, which correlate with the long vibrational progressions of the c(4) (') (1)Sigma(u) (+) (with v(')=0-8) and the b(') (1)Sigma(u) (+) (with v(') up to 19), have been observed. The present results provide important information for further unraveling of complicated and intriguing interactions among the excited electronic states of N(2). Furthermore, solar photon excitation of N(2) leading to the production of c(4) (')(0) may provide useful data required for evaluating and analyzing dayglow models relevant to the interpretation of c(4) (')(0) in the atmospheres of Earth, Jupiter, Saturn, Titan, and Triton.  相似文献   

4.
A new band system of C(2), d (3)Pi(g)<--c (3)Sigma(u) (+) is observed by laser induced fluorescence spectroscopy, constituting the first direct detection of the c (3)Sigma(u) (+) state of C(2). Observations were made by laser excitation of c (3)Sigma(u) (+)(v(")=0) C(2), produced in an acetylene discharge, to the d (3)Pi(g)(v(')=3) level, followed by detection of Swan band fluorescence. Rotational analysis of this band yielded rotational constants for the c (3)Sigma(u) (+)(v(")=0) state: B(0)=1.9218(2) cm(-1), lambda(0)=-0.335(4) cm(-1) and gamma(0)=0.011(2) cm(-1). The vibrational band origin was determined to be nu(3-0)=15861.28 cm(-1).  相似文献   

5.
6.
The C(2) molecule exhibits unusual bonding and several low-lying excited electronic states, making the prediction of its potential energy curves a challenging test for quantum chemical methods. We report full configuration interaction results for the X (1)Sigma(g) (+), B (1)Delta(g), and B(') (1)Sigma(g) (+) states of C(2), which exactly solve the electronic Schrodinger equation within the space spanned by a 6-31G( *) basis set. Within the D(2h) subgroup used by most electronic structure programs, these states all have the same symmetry ((1)A(g)), and all three states become energetically close for interatomic distances beyond 1.5 A. The quality of several single-reference ab initio methods is assessed by comparison to the benchmark results. Unfortunately, even coupled-cluster theory through perturbative triples using an unrestricted Hartree-Fock reference exhibits large nonparallelity errors (>20 kcal mol(-1)) for the ground state. The excited states are not accurately modeled by any commonly used single-reference method, nor by configuration interaction including full quadruple substitutions. The present benchmarks will be helpful in assessing theoretical methods designed to break bonds in ground and excited electronic states.  相似文献   

7.
The C((3)P) + OH(X (2)Pi) --> CO(X (1)Sigma(g)(+)) + H((2)S) reaction has been investigated by ab initio electronic structure calculations of the X(2)A' state based on the multireference (MR) internally contracted single and double configuration interaction (SDCI) method plus Davidson correction (+Q) using Dunning aug-cc-pVQZ basis sets. In particular, the multireference space is taken to be a complete active space (CAS). Improvement over previously proposed potential energy surfaces for HCO/COH is obtained in the sense that present surface describes also the potential part where the CO interatomic distance is large. A large number of geometries (around 2000) have been calculated and analytically fitted using the reproducing kernel Hilbert space (RKHS) method of Ho and Rabitz both for the two-body and three-body terms following the many-body decomposition of the total electronic energies. Results show that the global reaction is highly exothermic ( approximately 6.4 eV) and barrierless (relative to the reactant channel), while five potential barriers are located on this surface. The three minima and five saddle points observed are characterized and found to be in good agreement with previous work. The three minima correspond to the formation of HCO and COH complexes and to the CO + H products, with the COH complex being a metastable minimum relative to the product channel. The five saddle points correspond to potential barriers for both the dissociation/formation of HCO and COH into/from CO + H, to barriers for the isomerization of HCO into COH and to barriers for the inversion of HCO and COH through their respective linear configuration.  相似文献   

8.
We have investigated the Rb2 475 nm system by resonance enhanced two-photon ionization spectroscopy in a pulsed molecular beam. Strong extra bands accompanying the 2 (1)Pi(u) v' = 5 - 8 <-- X (1)Sigma(g)(+) v' = 0 bands were newly observed. Rotational analysis of the main and extra bands reveals that the 2 (1)Pi(u) v' = 5 - 8 levels are significantly perturbed, mainly by the 3 (3)Sigma(u)(+)(1 u) state and also by the 2 (3)Pi(u)(1 u) state. For the major perturber, 3 (3)Sigma(u)(+)(1 u), the intensity borrowing has been found to be facilitated by the 2 (1)Pi(u)-3 (3)Sigma(u)(+)(1 u) potential energy curve crossing near 21,100 cm(-1). For the vibronic-band intensities of the 2 (3)Pi(u)(1 u) v' <-- X (1)Sigma(g)(+) v' = 0 transitions observed in this spectral region, intensity borrowing was most effective when the 2 (3)Pi(u)(1 u) levels were close to the 3 (3)Sigma(u)(+)(1 u) levels. A deperturbation fit for the perturbing bands has provided the 2 (1)Pi(u)-3 (3)Sigma(u)(+)(1 u) coupling constants.  相似文献   

9.
First quasiclassical trajectory calculations have been carried out for the C(3P)+OH(X 2Pi)-->CO(X 1Sigma+)+H(2S) reaction using a recent ab initio potential energy surface for the ground electronic state, X 2A', of HCO/COH. Total and state-specific integral cross sections have been determined for a wide range of collision energies (0.001-1 eV). Then, thermal and state-specific rate constants have been calculated in the 1-500 K temperature range. The thermal rate constant varies from 1.78x10(-10) cm3 s-1 at 1 K down to 5.96x10(-11) cm3 s-1 at 500 K with a maximum value of 3.39x10(-10) cm3 s-1 obtained at 7 K. Cross sections and rate constants are found to be almost independent of the rovibrational state of OH.  相似文献   

10.
An analytical potential energy surface (PES) representation of the O(+)((4)S)+H(2)(X (1)Sigma(g) (+)) system was developed by fitting around 600 CCSD(T)/cc-pVQZ ab initio points. Rate constant calculations for this reaction and its isotopic variants (D(2) and HD) were performed using the quasiclassical trajectory (QCT) method, obtaining a good agreement with experimental data. Calculations conducted to determine the cross section of the title reaction, considering collision energies (E(T)) below 0.3 eV, also led to good accord with experiments. This PES appears to be suitable for kinetics and dynamics studies. Moreover, the QCT results show that, although the hypotheses of a widely used capture model are not satisfied, the resulting expression for the cross section can be applied within a suitable E(T) interval, due to errors cancellation. This could be a general situation regarding the application of this simple model to ion-molecule processes.  相似文献   

11.
The D+ transfer reaction between OH- (X1sigma+) and D2 was studied with crossed molecular beam experiments and quantum chemical calculations at collision energies of 89 and 68 kJ/mol. The D- product ions were observed and measured for the first time in the crossed beam experiments. The center-of-mass (c.m.) flux distributions of the D- product ions exhibit significant asymmetry, and their maxima are close to the velocity and direction of the precursor D2 beam. The data are consistent with a direct mechanism that occurs on a time scale significantly less than a rotational period of the transient complex formed by approaching reactants. The D+ transfer results primarily in the excitation of the H-O-D bending vibrational mode of the molecular product. The experimental observation is in agreement with theoretical results showing that, during the D+ transfer, the H-O-D bond angle changes significantly.  相似文献   

12.
Quasiclassical trajectory calculations have been carried out for the C((3)P)+OH(X (2)Pi)-->CO(X (1)Sigma(+))+H((2)S) reaction using a recent ab initio potential energy surface for the ground electronic state X (2)A(') of COH. Differential cross sections (DCSs), and product vibrational, rotational and translational distributions have been determined for a wide range of collision energies (0.001-1 eV). The role of excitations (rotation or vibration) of the OH reactant on these quantities has been investigated. Product vibrational, rotational, and translational distributions are found to be almost independent on the rovibrational state of OH, whereas DCSs show a weak dependence on the initial rotational state of OH. We also analyze the results using a study based on the lifetime of the intermediate complex and on the kinematic constraint associated with the mass combination.  相似文献   

13.
We present a fundamentally new approach for measuring the transition dipole moment of molecular transitions, which combines the benefits of quantum interference effects, such as the Autler-Townes splitting, with the familiar R-centroid approximation. This method is superior to other experimental methods for determining the absolute value of the R-dependent electronic transition dipole moment function mu(e)(R), since it requires only an accurate measurement of the coupling laser electric field amplitude and the determination of the Rabi frequency from an Autler-Townes split fluorescence spectral line. We illustrate this method by measuring the transition dipole moment matrix element for the Na2 A 1Sigma(u)+ (v' = 25, J' = 20e)-X 1Sigma(g)+ (v" = 38, J" = 21e) rovibronic transition and compare our experimental results with our ab initio calculations. We have compared the three-level (cascade) and four-level (extended Lambda) excitation schemes and found that the latter is preferable in this case for two reasons. First, this excitation scheme takes advantage of the fact that the coupling field lower level is outside the thermal population range. As a result vibrational levels with larger wave function amplitudes at the outer turning point of vibration lead to larger transition dipole moment matrix elements and Rabi frequencies than those accessible from the equilibrium internuclear distance of the thermal population distribution. Second, the coupling laser can be "tuned" to different rovibronic transitions in order to determine the internuclear distance dependence of the electronic transition dipole moment function in the region of the R-centroid of each coupling laser transition. Thus the internuclear distance dependence of the transition moment function mu(e)(R) can be determined at several very different values of the R centroid. The measured transition dipole moment matrix element for the Na2 A 1Sigma(u)+ (v' = 25, J' = 20e)-X 1Sigma(g)+ (v" = 38, J" = 21e) transition is 5.5+/-0.2 D compared to our ab initio value of 5.9 D. By using the R-centroid approximation for this transition the corresponding experimental electronic transition dipole moment is 9.72 D at Rc = 4.81 A, in good agreement with our ab initio value of 10.55 D.  相似文献   

14.
The (1 X 1) --> quasihexagonal (HEX) phase transition on a clean Pt(100) surface was investigated by monitoring the time evolution of the Pt4f(72) core level photoemission spectra. The spectral component originating from the atoms forming the (1x1) metastable unreconstructed surface was found at -570+/-20 meV with respect to the bulk peak. Ab initio calculations based on density functional theory confirmed the experimental assignment. At temperatures above 370 K, the (1 X 1) phase irreversibly reverts to the more stable HEX phase, characterized by a surface core level shifted component at -185 +/ -40 meV. By analyzing the intensity evolution of the core level components, measured at different temperatures in the range of 393 - 475 K, we determined the activation energy of the phase transformation, E = 0.76 +/- 0.04 eV. This value is considerably lower than the one previously determined by means of low energy electron diffraction. Possible reasons for this discrepancy are discussed.  相似文献   

15.
16.
Five-dimensional nonadiabatic quantum dynamics studies have been carried out on two new potential energy surfaces of S(2)((1)A(')) and T(7)((3)A(")) states for the title oxygen molecules collision with coplanar configurations, along with the spin-orbit coupling between them. The ab initio calculations are based on complete active state second-order perturbation theory with the 6-31+G(d) basis set. The calculated spin-orbit induced transition probability as a function of collision energy is found to be very small for this energy pooling reaction. The rate constant obtained from a uniform J-shifting approach is compared with the existing theoretical and experimental data, and the spin-orbit effect is also discussed in this electronic energy-transfer process.  相似文献   

17.
The reaction between energetic nitrogen atoms and oxygen molecules has received important attention in connection with nitric oxide chemistry in the lower thermosphere. We report time-independent quantum mechanical calculations of the N(4S)+O2-->NO+O reaction employing the X 2A' and a 4A' electronic potential energy surfaces of Sayos et al. [J. Chem. Phys. 117, 670 (2002)]. We confirm the production of highly vibrationally excited NO molecules, consistent with previous semiclassical and more recent time-dependent quantum wave packet studies. Calculations are carried out for total angular momentum quantum number J=0 and cross sections and rate coefficients are extracted using the J-shifting approximation. The results are in good agreement with available experimental and theoretical data.  相似文献   

18.
The rate constant for the reaction OH(X2Pi) + OH(X2Pi) --> O(3P) + H2O has been measured over the temperature range 293-373 K and pressure range 2.6-7.8 Torr in both Ne and Ar bath gases. The OH radical was created by 193 nm laser photolysis of N2O to produce O(1D) atoms that reacted rapidly with H2O to produce the OH radical. The OH radical was detected by quantitative time-resolved near-infrared absorption spectroscopy using Lambda-doublet resolved rotational transitions of the first overtone of OH(2,0) near 1.47 microm. The temporal concentration profiles of OH were simulated using a kinetic model, and rate constants were determined by minimizing the sum of the squares of residuals between the experimental profiles and the model calculations. At 293 K the rate constant for the title reaction was found to be (2.7 +/- 0.9) x 10(-12) cm(3) molecule(-1) s(-1), where the uncertainty includes an estimate of both random and systematic errors at the 95% confidence level. The rate constant was measured at 347 and 373 K and found to decrease with increasing temperature.  相似文献   

19.
The reaction N+NO-->N(2)+O was studied by means of the time-dependent real wave-packet (WP) method and the J-shifting approximation. We consider the ground 1 (3)A(") and first excited 1 (3)A(') triplet states, which correlate with both reactants and products, using analytical potential energy surfaces (PESs) recently developed in our group. This work extends our previous quantum dynamics study, and probabilities, cross sections, and rate constants were calculated and interpreted on the basis of the different shapes of the PESs (barrierless 1 (3)A(") and with barrier 1 (3)A(') surfaces, respectively). The WP rate constant (k(1)) shows a weak dependence on T(200-2500 K), as the dominant contribution to reactivity is provided by the barrierless ground PES. There is a good agreement of WP k(1) with the measurements and variational transition state theory (VTST) data, and also between the WP and VTST k(1)(1 (3)A(")) results. Nevertheless, there is a large discrepancy between the WP and VTST k(1)(1 (3)A(')) results. Product state distributions were also calculated for the much more reactive 1 (3)A(") PES. There is an excellent agreement with the experimental average fraction of vibrational energy in N(2)(25+/-3%), the only measured dynamics property of this reaction.  相似文献   

20.
The fluorescence spectrum of Na2 induced by the 4879.86 A line of an Argon ion laser has been analyzed with special emphasis on determination of accurate relative intensities. We have observed nineteen fluorescence series for the B1pi(u) --> X1sigma(g)+ band system. Some series are reported for the first time. The radiative transition probabilities for the observed fluorescence series were calculated using hybrid potential energy curves for the B1pi(u) and X1sigma(g)+ states constructed up to dissociation and a B-X transition dipole moment function. Radiative lifetimes for the rovibrational levels of the upper states pumped by the laser line have also been calculated. The transition probabilities and lifetimes agree with the corresponding observed measurements usually within the experimental uncertainty. From the rotational satellite structure with deltaJ' = +/- 1, +/- 2...+/- 20, for some nu'-bands of the most intense fluorescence series induced by emission from the vibrational-rotational levels: nu' = 6, J' = 43 and v' = 9, J' = 56, collision-induced transition rates and average cross sections have been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号