首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Biphenyldiyl-2,2'-bis(methylphosphonic acid) (BBMP) and benzenetriyl-1,3,5-tris(methylphosphonic acid) (BTMP) as ligands have been synthesized from diphenic acid and trimesic acid, respectively. Cu, Mn and Co complexes of BBMP have been prepared but similar complexes of BTMP did not crystallize. However, a copper compound with added 4,4'-bipyridyl was obtained. This copper complex is dimeric in which the dimers are linked into a supramolecular compound through the bipyridyl groups. Interestingly, the structure was solved in P1 with an unusual correlation between the ligand oxygen bond distances and the copper bond distances to water molecules. The Mn and Co BBMP complexes are isostructural in which the BBMP ligands phenyl groups rotate around each other to bridge the metal atoms forming 1:1 linear chains. There are four water molecules bonded to Co that can be removed reversibly. In the case of the Cu compound, one Cu is square planar bonded to four phosphonate oxygen atoms from two BBMP molecules. The second copper is six coordinate adding two water molecules in the axial positions. The two copper ions alternate forming a one dimensional chain but with ligands bonding the chain on both sides. The four coordinate copper atoms are chelated by two BBMP ligands utilizing one oxygen atom from the two phosphonate groups of each ligand and a second oxygen atom from these groups that bridge across the Cu atoms to bond to the six coordinate copper ion. A detailed synthetic procedure for each of the two ligands is supplied as ESI.  相似文献   

2.
The synthesis and the X-ray structure of two complexes exhibiting a linear chain of four nickel atoms is reported, following Ni4(mu4-phdpda)4 (1), which had been characterized previously. [Ni4(mu4-Tsdpda)4(H2O)2], where H2Tsdpda is N-(p-toluenesulfonyl)dipyridyldiamine (2), is axially coordinated to two water molecules, at variance with 1. One-electron oxidation of 2 resulted in the loss of the axial ligands, yielding [Ni4(mu4-Tsdpda)4]+, [3]+, which was also structurally characterized. Finally, we report the structure of Ni4(mu4-DAniDANy)4 (4), a complex synthesized starting from the new ligand N,N'-bis-p-anisyl-2,7-diamino-1,8-naphthyridine. Magnetic measurements concluded that 4 is diamagnetic, like 1, whereas 2 is antiferromagnetic (-2J(14) = 80 cm(-)(1), using the Heisenberg Hamiltonian H = -2J(14) S(1).S(4)), as are other axially coordinated chains with an odd number of nickel atoms. DFT calculations are reported on these complexes in order to rationalize their electronic structure and their magnetic behavior. The magnetic properties of the [Ni4]8+ complexes are governed by the electronic state of the Ni(II) atoms, which may be either low-spin (S = 0), or high-spin (S = 1). DFT calculations show that the promotion to high spin of two Ni atoms in the chain, either external or internal, depends on the interplay between axial and equatorial coordination. The synergy between axial coordination and the presence of electron-withdrawing toluenesulfonyl substituents in 2 favors the promotion to the high-spin state of the terminal Ni atoms, thus yielding an antiferromagnetic ground state for the complex. This is at variance with complexes 1 and 4, for which the lowest quintet state results from the promotion to high spin of the internal nickel atoms, together with an important ligand participation, and is destabilized by 9 to 16 kcal mol(-1) with respect to the diamagnetic ground state.  相似文献   

3.
The title compound, diaqua(bissalicylato-??O)(bisnicotinamide-??N)zinc(II)][bis(triaqua (monosalicylato-??O)(mononicotinamide-??N)zinc(II)salicylate, includes three Zn(II) ions, four nicotinamide ligands, six salicylate ligands and eight coordinated aqua ligands in the asymmetric unit in complex structure. The geometry around one of the Zn(II) ions is a slightly distorted octahedron, of which the equatorial plane is formed by two carboxylate oxygens and two aqua oxygens, while the axial positions are occupied by two pyridyl nitrogen atoms. The other Zn(II) ions adopt fivefold coordinations with one carboxylate oxygen atom from salicylate ligand, one N atom from nicotinamide ligand and three oxygen atoms from aqua ligands. In addition, there are two salicylate anions in the unit cell that are not coordinated. They provide charge balance as counter-ions in the complex framework.  相似文献   

4.
The first representative of a new class of TcN complexes with thiacrown ethers have been prepared by ligand exchange reaction of NBu4[TcNCl4] with 1,4,8,11-tetrathiacyclotetradecane (14S4), 1,5,9,13-tetrathiacyclohexadecane (16S4), 1,5,9,13-tetrathiacyclohexadecane-3,11-diole (16S4-(OH)2) and 1,4,7,10,13,16-hexathiacyclooctadecane (18S6). The crystal structure of [TcNCl(14S4)]TcNCl4 1) consists of couples of independent cations with the metal in the oxidation state + 5 and hexavalent TcNCl4 anions. In the complex cation the metal is six-coordinated in a rather distorted octahedral geometry, being directly bound to four sulphur atoms from the macrocyclic ligand in the equatorial plane and to the nitrido atom and to one chlorine atom in the axial positions. The strong trans influence of the nitrido ligand causes an extreme lengthening of the Tc---Cl bond distance to 2.718 Å. The octahedral molecular structure of [TcNCl(18S6)]TcNCl4 (3) is comparable with that of 1, but only four sulphur atoms of the thiacrown ether form the equatorial plane, two sulphur atoms remain non-coordinated, and the nitrido and Cl ligands are in axial positions. The most interesting feature in the structure of [TcNCl(16S4-(OH)2)]Cl (5) is the observation of an exceptionally long Tc---N distance of 1.95 Å.  相似文献   

5.
The title polymeric compound, [CuCl2(C5H10N4)2]n, is the first structurally characterized complex with a bulky 1‐alkyl­tetrazole ligand. The coordination polyhedron of the Cu atom is an elongated octahedron. The equatorial positions of the octahedron are occupied by the two Cl atoms, with Cu—Cl distances of 2.2920 (8) and 2.2796 (9) Å, and by the two N‐4 atoms of the tetrazole ligands, with Cu—N distances of 2.023 (2) and 2.039 (2) Å. Two symmetry‐related Cl atoms occupy the axial positions, at distances of 2.8244 (8) and 3.0174 (8) Å from the Cu atom. The [CuCl2(C5H10N4)2] units form infinite chains extended along the b axis, linked together only by van der Waals interactions. The skeleton of each chain consists of Cu and Cl atoms.  相似文献   

6.
Wu CD  Zhang L  Lin W 《Inorganic chemistry》2006,45(18):7278-7285
Six homochiral coordination polymers 1-6 based on a new enantiopure elongated (S)-2,2'-diethoxy-1,1'-binaphthyl-6,6'-bis(4-vinylpyridine) ligand (L) and divalent metal (Zn, Cd, and Ni) connecting points were synthesized and characterized by single-crystal X-ray diffraction studies. These new homochiral coordination polymers adopt two distinct framework structures: a one-dimensional infinite chain structure with bridging L ligands occupying the axial positions of the metal centers and a two-dimensional rhombic grid structure formed by linking octahedrally coordinated metal centers with four pyridyl groups of bridging L ligands in the equatorial positions. The structures of these coordination polymers are sensitive to the nature of the anions as well as the solvents from which the coordination polymer crystals were grown. Powder X-ray diffraction studies showed that the two-dimensional chiral rhombic grids exhibited porosity, which could potentially find applications in enantioselective separations and catalysis.  相似文献   

7.
In the title mixed‐ligand metal–organic polymeric complex, {[Co(NCS)2(C8H12N6)2]·2H2O}n, the asymmetric unit contains a divalent CoII cation, which sits on an inversion centre, two halves of two crystallographically distinct and centrosymmetric 1,4‐bis(1,2,4‐triazol‐1‐yl)butane (BTB) ligands, one N‐bound thiocyanate ligand and one solvent water molecule. The CoII atom possesses a distorted {CoN6} octahedral geometry, with the equatorial positions taken up by triazole N atoms from four different BTB ligands. The axial positions are filled by thiocyanate N atoms. In the crystal, each CoII atom is linked covalently to four others through the distal donors of the tethering BTB ligands, forming a neutral (4,4)‐topology two‐dimensional rhomboid grid layer motif, which is coincident with the (11) crystal planes. Magnetic investigations show that weak antiferromagnetic coupling exists between CoII atoms in the complex.  相似文献   

8.
The axial positions of planar metallomacrocycles are unoccupied. The positively charged metal is thus a potential binding site for electron-donating groups. The binding strength is affected by the central metal, the ligand, and the macrocycle. One ligand leads to the out-of-plane displacement of the central metal, whereas two ligands from two sides structurally neutralize each other. The axial ligand donates charge to the central metal and the macrocycle when the lone pair orients along the interaction axis. The frontier orbital levels are elevated because of the charge donated to the macrocycle. Even though the singlet-triplet gap and the absorption maximum do not change significantly upon binding, the redox chemistry is considerably affected by the shifts of orbital levels. The macrocyclic M-N bonds are weakened by the binding, but their natures remain almost unchanged. Calcium phthalocyanine is a special case, as the central calcium is too large to fit the cavity. Accordingly, multiple ligands facilely bind to the calcium from one side. The aluminum phthalocyanine halogen is another special case, as it has a halogen ligand coordinating to the aluminum through a nondative bond. This leads to some effects different from those caused by dative binding. When there is no considerable steric demand, the lone pair points along the interaction axis to facilitate the donation. When in a stacked dimer, the electron-rich group is part of a large molecule, and the orientation of the lone pair is approximately perpendicular to the interaction axis. This induces the charge loss of the central metal. Because metallomacrocycles are widespread in the biological, medical, and material sciences, the results from this study are expected to bring useful insights to these fields.  相似文献   

9.
Reversible stepwise chain growth in linear CuI assemblies can be achieved by using the dynamic, unsymmetric naphthyridinone‐based ligand scaffolds L1 and L2 . With the same ligand scaffolds, the length of the linear copper chain can be varied from two to three and four copper atoms, and the nuclearity of the complex is easily controlled by the stepwise addition of a CuI precursor to gradually increase the chain length, or by the reductive removal of Cu atoms to decrease the chain length. This represents a rare example of a stepwise controlled chain growth in extended metal atom chains (EMACs). All complexes are formed with excellent selectivity, and the mutual transformations of the complexes of different nuclearity were found to be fast and reversible. These unusual rearrangements of metal chains of different nuclearities were achieved by a stepwise “sliding” movement of the naphthyridinone bridging fragment along the metal chain.  相似文献   

10.
Ghosh SK  Patra R  Rath SP 《Inorganic chemistry》2008,47(21):9848-9856
A hitherto unknown family of six-coordinate vanadyl porphyrins of the sterically crowded, nonplanar 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetranitroporphyrin incorporating axial ligand L [where L is pyridine, tetrahydrofuran (THF), or methanol (MeOH)] has been isolated as VO(tn-OEP)(L) in the solid phase for the first time and also structurally characterized. The presence of four electron-withdrawing, bulky nitro groups at the meso positions of vanadyl octaethylporphyrins severely distorts the porphyrin macrocycles and significantly enhances the affinity for the axial ligands, where even weak sigma-donating ligands, such as MeOH, bind strongly enough to be isolable in the solid phase and that too under the offset effects of the macrocyclic distortions. Thus, the axial ligand affinity is influenced by both the electronic and conformational effect, which cannot be separated completely in this series. The solid-state magnetic measurements and their typical electron paramagnetic resonance (EPR) spectrum show the presence of a single, unpaired electron, consistent with V(IV) formulation. The VO stretching frequency for VO(tn-OEP) occurs as a sharp, strong peak at 1008 cm(-1), which is consistent with five-coordinate vanadyl porphyrins, while VO(tn-OEP)(L) displays a strong band at lower wavenumbers. The downshift in nu(VO) upon axial coordination increases with increasing donor strength of the axial ligands; for pyridine, the downshift is 30 cm(-1), while for THF and MeOH, the downshifts are nearly 18 cm(-1). X-ray structure determinations authenticate axial coordination in a purely saddle-distorted porphyrin macrocycle for all of the complexes reported here in which V-Np distances are significantly shorter, while the porphyrin cores have been expanded on axial ligand coordination. As a result, vanadium atoms are more inplane than in a five-coordinate species. The binding of L does not change the spin or metal oxidation states (V(IV), d(1)-system) of the complexes; therefore, the changes observed are truly the reflections of axial ligand coordination. Electrochemical data obtained from cyclic voltammetric studies reveal that the complexes are much easier to reduce (by approximately 1200 mV) but more difficult to oxidize (by approximately 500 mV) as compared to nearly planar VO(OEP). The complexes undergo two one-electron oxidations due to pi-cation radical and dication formation and three one-electron reductions. The first two reductions are because of pi-anion radical and dianion formation, while the third quasi-reversible reduction is assigned to a metal-centered process (V(IV) --> V(III)). These results can be useful for identifying the interaction of the vanadyl porphyrins with the biological targets in their reported involvement in potent insulinomimetic activity and in anti-HIV agents.  相似文献   

11.
The syntheses, spectroscopy and single crystal X‐ray structures of the multifunctional acrylamide‐derived ligand N‐pyrazolylpropanamide (= L) ( 1 ), and its complexes [L2CuCl2] ( 2 ) and [L4Co3Cl6] ( 3 ) with copper(II) and cobalt(II) chlorides, respectively, are described. The ligand 1 is easily obtained in one step by the reaction of pyrazole with acrylamide in a 1:1 molar ratio in the presence of trimethylbenzylammonium hydroxide as a basic catalyst. The reaction of CuCl2·2H2O with 1 in a 1:2 metal salt:ligand molar ratio in ethanol/‐triethylorthoformate solution gave coordination compound 2 . The crystal structure of 2 contains two seven‐membered chelate rings formed by two nitrogen atoms of the pyrazolyl groups and two weakly coordinated carbonyl oxygen atoms of the substituted amide moieties. Two chloride ions in the axial positions complete a distorted octahedral coordination environment around the CuII atom. The reaction of CoCl2·6H2O with 1 in a 1:2 metal salt:ligand molar ratio afforded the unusual zwitterionic complex 3 . The crystal structure of 3 contains a central cobalt atom in an octahedral coordination surrounded by four ligands in which two of them act as chelate ligands and the other two, coordinated via the carbonyl oxygen atoms of the amide moieties to this metal center, act as bridging ligands bonded to two CoCl3? units.  相似文献   

12.
<正> 在有限的空间中排列物体时,被排列物体的几何因素对排列方式会产生影响。我们将这种效应称为“堆积效应”。用积木游戏可形象说明堆积效应。如在一个圆形积木盒中放进四块圆积木(图1),显然这些积木不能任意排列。积木B只能分别置于积木A的两侧。它们“摄动”的范围是很小的。同样,在配位化合物的分子结构中,配位空间只有4π立体角,  相似文献   

13.
The rational design and syntheses of a new series of Os(II) complexes with formula [Os(fppz)(2)(CO)(L)] (1: L=4-dimethylaminopyridine; 2: L = pyridine; 3: L = 4,4'-bipyridine; 4: L = pyridazine; 5: L = 4-cyanopyridine), bearing two (2-pyridyl)pyrazolate ligands (fppz) together with one carbonyl and one N-heterocyclic ligand at the axial positions are reported. Single-crystal X-ray diffraction studies of, for example, 2 reveal a distorted octahedral geometry in which both fppz ligands reside in the equatorial plane with a trans configuration and adopt a bent arrangement at the metal center with a dihedral angle of approximately 23 degrees , while the carbonyl and pyridine ligands are located at the axial positions. Variation of the axial N-heterocyclic ligand leads to remarkable changes in the photophysical properties as the energy gap and hence the phosphorescence peak wavelength can be tuned. For complexes 1 and 2 the solvent-polarity-independent phosphorescence originates from a combination of intraligand (3)pi-pi* ((3)ILCT) and metal-to-ligand charge transfer transitions ((3)MLCT). In sharp contrast, as supported by cyclic voltammetry measurements and theoretical calculations, complexes 3--5 exhibit mainly ligand-to-ligand charge transfer (LLCT) transitions, resulting in a large dipolar change. The phosphorescence of complexes 3--5 thus exhibits a strong dependence on the polarity of the solvent, being shifted for example, from 560 (in C(6)H(12)) to 665 nm (in CH(3)CN) and from 603 (in C(6)H(12)) to 710 nm (in CH(3)CN) for complexes 3 and 5, respectively. The results clearly demonstrate that a simple, straightforward derivatization of the axial N-heterocyclic ligand drastically alters the excitation properties per se from intraligand charge transfer (ILCT) to LLCT transitions. The latter exhibit remarkable LLCT phosphorescence solvatochromism so that a broad range of color tunability can be achieved.  相似文献   

14.
The effect on metal-ion selectivity of the use of cyclohexenyl bridges in ligands in place of ethylene bridges is examined (selectivity is defined as the difference in log K1 for one metal ion relative to that of another with the same ligand). The syntheses of N,N'-bis(2-hydroxycyclohexyl)ethane-1,2-diamine (Cy2-en), N,N'-bis(2-hydroxycyclohexyl)propane-1,3-diamine (Cy2-tn), and 1,7-bis(2-hydroxycyclohexyl)-1,4,7-triazaheptane (Cy2-dien) are reported. The crystal structures of [Cu(Cy2-tn)(H2O)](ClO4)2 (1) and [Cu(Cy2-dien)](ClO4)2 (2) are reported. Characteristics of 1: monoclinic, Pn space group, a=11.627(2) A, b=7.8950(10) A, c=12.737(8) A, beta=98.15(3) degrees, Z=2, R=0.0524. Characteristics of 2: orthorhombic, Pbca space group, a=21.815(16) A, b=8.525(7) A, c=25.404(14) A, Z=8, R=0.0821. Structure 1 has the Cu(II) atom coordinated in the plane of the ligand to the two N donors and two O donors, with a long bond to an axially coordinated water molecule. 2 has three N donors, and one hydroxyl O donor from the ligand is coordinated in the plane around the Cu(II) atom, with the second hydroxyl O donor of the ligand occupying an axial site with a long Cu-O bond. The salient feature of both structures is the short H-H nonbonded distance between H atoms on the cyclohexenyl bridges and H atoms on the ethylene bridges of the ligand. These short contacts are important in explaining the metal-ion selectivities of these ligands. Formation constants, determined by glass-electrode potentiometry, for the Cy2-en (Cu(II), Ni(II), Zn(II), Cd(II), Pb(II)), Cy2-dien (Cu(II), Zn(II), Cd(II), Pb(II)), and Cy2-tn (Cu(II), Zn(II), Cd(II)) complexes are reported. These all show a strong shift in selectivity toward smaller metal ions compared with the analogous ligands, where ethylene bridges are present in place of the cyclohexenyl bridges of the ligands studied here. Molecular mechanics (MM) calculations are used to analyze these changes in selectivity. These calculations show that the short H-H contacts become shorter with increasing metal-ion size, which is suggested as the cause of the shift in the selectivity of ligands in favor of smaller metal ions when ethylene bridges are replaced with cyclohexenyl bridges. MM calculations are also used to rationalize, in terms of short H-H contacts, the fact that when the chelate ring contains two neutral O donors, more stable complexes result with cis placement of the donor atoms on the cyclohexenyl bridge, but with two N donors, trans placement of the donor atoms results in more stable complexes.  相似文献   

15.
This paper describes in detail four new compounds that contain extended metal atom chains (EMACs) of three nickel atoms wrapped by either di(2-pyridyl)amide (dpa) or the new homologous ligand with an ethyl group at the para position of each pyridyl group, depa, and compares them to the precursor Ni(3)(dpa)(4)Cl(2) (1) and the oxidized and rather unstable Ni(3)(dpa)(4)(PF(6))(3) (2). The new molecules are Ni(3)(depa)(4)Cl(2) (3), Ni(3)(depa)(4)(PF(6))(3) (4), [Ni(3)(dpa)(4)(CH(3)CN)(2)](PF(6))(2) (5), and [Ni(3)(depa)(4)(CH(3)CN)(2)](PF(6))(2) (6). These compounds are fully described as to preparation, elemental composition, structure, infrared spectra, (1)H NMR spectra (where possible), electrochemistry, magnetic susceptibility, and an EPR spectrum for 4. The effects of (a) introducing the ethyl substituents on the ligands, (b) replacing axial anions by neutral axial ligands, and (c) oxidizing the Ni(3) chains are reported and discussed. The point of major interest is how oxidation profoundly alters the electronic structure of the EMAC.  相似文献   

16.
以1,3-二(4-吡啶基)-丙烷(bpp)和邻苯二甲酸(1,2-H2bdc)为配体,通过水热法合成了过渡金属配合物M2(1,2-bdc)2(bpp)2·2H2O[M=Co(1),Ni(2)]和Cd(1,2-bdc)(bpp)·H2O(3).配合物1和2属单斜晶系P21空间群,具有相似的三维骨架结构.配合物中存在2种配位环境相似的金属中心,每个金属中心采取六配位的畸变八面体构型,与来自2个1,2-bdc配体的3个氧原子和2个bpp配体的2个氮原子以及1个水分子配位.1,2-bdc配体采取单齿/双齿螯合的配位模式将金属离子连接成M1-(1,2-bdc)-M2右手螺旋链.bpp配体采取Trans-Gauche(TG)构型,连接相邻的金属离子形成M1-(bpp)-M1链和M2-(bpp)-M2链.这3种链交织在一起构筑成具有{65.8}拓扑的三维结构.配合物3属单斜晶系P21/c空间群,具有单节点的双层二维结构.Cd(Ⅱ)离子采取七配位的畸变五角双锥体构型,与来自2个1,2-bdc配体的4个氧原子,2个bpp配体的2个氮原子和1个水分子配位.1,2-bdc配体采取双齿螯合/双齿螯合的配位模式将Cd(Ⅱ)离子连接成Cd-(1,2-bdc)-Cd链.bpp配体采取TG构型,连接相邻的Cd(Ⅱ)离子,形成Cd-(bpp)-Cd链.这2种链通过共享Cd(Ⅱ)离子交错排列构筑成二维结构.配合物3显示出强的荧光,最大发射位于408 nm处,对应于配体的π*-π跃迁.不同有机小分子对配合物3的荧光强度有不同程度的影响,苯胺对其有显著的猝灭作用,基于荧光猝灭机理,配合物3可用于选择性检测苯胺分子.  相似文献   

17.
In the polymeric title complex, [CuCl2(C3H6N4)2]n, there are two ligands in the asymmetric unit. The Cu atom adopts an elongated octahedral geometry, with two 2‐ethyl­tetrazole ligands [Cu—N = 2.0037 (16) and 2.0136 (16) Å] and two Cl atoms [Cu—Cl = 2.2595 (6) and 2.2796 (6) Å] in equatorial positions. A Cl atom and a symmetry‐related 2‐ethyl­tetrazole mol­ecule [Cu—Cl = 2.8845 (8) Å and Cu—N = 2.851 (2) Å] lie in the axial positions of the octahedron. One of the two 2‐­ethyltetrazole ligands of the asymmetric unit exhibits bidentate binding to two Cu atoms through two N atoms of the tetrazole ring, whereas the other ligand is coordinated in a monodentate fashion via one tetrazole N atom. The Cu‐atom octahedra form dimer entities by sharing edges with equatorial and axial Cl atoms. The dimers are linked together through the 2‐ethyl­tetrazole ligands to form one‐dimensional polymeric zigzag chains extending along the b axis. The chains are connected into infinite layers parallel to the (10) plane via the 2‐ethyl­tetrazole ligands.  相似文献   

18.
The chemistry of transition metal dithiolene complexes containing N coordinating groups and the corresponding TTF donors, is reviewed starting from the ligand synthesis to the coordination structures where these dithiolene complexes are used as bridging units. The dithiolene ligands containing N coordinating atoms present two coordination poles which can selectively bind different metals and act as bridging units in a variety of coordination architectures. The transition metal dithiolene complexes based on these N containing ligands and the corresponding TTF donors can be themselves regarded as ligands. These can be used to coordinate other metals, potentially leading to a diversity of hetero metallic coordination architectures. With the use of appropriate auxiliary ligands they can lead to discrete metal complexes. In addition they can lead to more extended polymeric structures of different dimensionality such as 1D chains, 2D layers or even 3D polymers can also be obtained.  相似文献   

19.
Two new compounds PtRe3(CO)12(PBut3)(micro-H)3, 9, and PtRe2(CO)9(PBut3)(micro-H)2, 10, were obtained from the reaction of Pt(PBut3)2 with Re3(CO)12(micro-H3), 8, at room temperature. Compound 9 contains a butterfly cluster of four metals formed by the insertion of the platinum atom from a Pt(PBut3) group into one of the hydride-bridged metal-metal bonds of 8. The three hydrido ligands are bridging ligands across each of three new Pt-Re bonds. Compound 10 contains a triangular PtRe2 cluster with two hydrido ligands; one bridges a Pt-Re bond, and the other bridges the Re-Re bond. The new compound Pt2Re2(CO)7(PBut3)2(micro-H)2, 11, was obtained from the reaction of 8 with Pt(PBut3)2 in hexane at reflux. Compound 11 was also obtained from 10 by reaction with an additional quantity of Pt(PBut3)2. Compound 11 contains a tetrahedral cluster of four metal atoms with two dynamically active hydrido ligands. A CO ligand on one of the two platinum atoms also exchanges between the two platinum atoms rapidly on the NMR time scale. Compound 11 is electronically unsaturated and was found to add hydrogen at room temperature to form the tetrahydrido cluster complex, Pt2Re2(CO)7(PBut3)2(micro-H)4, 12. Compound 12 has a structure similar to 11 but contains one triply bridging hydrido ligand, two edge bridging hydrido ligands, and one terminal hydrido ligand on one of the two platinum atoms. A kinetic isotope effect D/H of 1.5(1) was determined for the addition of H2 to 11. Hydrogen can be eliminated from 12 by heating to 97 degrees C or by the application of UV-vis irradiation at room temperature. Compound 12 adds CO at room temperature to yield the complex Pt2Re2(CO)8(PBut3)2(micro-H)4, 13, which contains a planar cluster of four metal atoms with a Pt-Pt bond and four edge bridging hydrido ligands. Compounds 11 and 12 react with Pt(PBut3)2 to yield the known five metal cluster complexes Pt3Re2(CO)6(PBut3)3(micro-H)2, 14, and Pt3Re2(CO)6(PBut3)3(micro-H)4, 15, respectively. Density functional calculations confirm the hydride positions in the lowest energy structural isomers of 11 and 12 and suggest a mechanism for H2 addition to 11 that occurs on the Pt atom with the lower coordination number.  相似文献   

20.
Several new amphiphilic iron complexes were synthesised and characterised by single crystal X‐ray structure analysis. The Schiff‐base‐like equatorial ligands contain long alkyl chains in their outer periphery with chain lengths of 8, 12, 16 and 22 carbon atoms. As axial ligands methanol, pyridine, 4‐aminopyridine, 4‐(dimethylamino)pyridine and 1,2‐bis(4‐pyridyl)ethane were used. X‐ray structure analysis of the products reveals different coordination numbers, depending on the combination of equatorial and axial ligand. The driving force for this is the self‐assembly to lipid‐layer‐like arrangements. This can be controlled through the chain lengths and the dimension of the axial ligands in a crystal‐engineering‐like approach. For this an empirical rule is introduced concerning the crystallisation behaviour of the complexes. The efficacy of this rule is confirmed with the crystallisation of an octahedral complex with two docosyl (C22) chains in the outer periphery. The rule is also applied to other ligand systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号