首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A non-intrusive optical measuring technique, the planar laser induced fluorescence is described to investigate mass transfer of a fluorescent dye (rhodamine B) across an interface between two partial immiscible liquids (1-butanol and water). The spatial resolution of the measurement technique used for the mass transfer investigations was 31.6 μm. The measured concentration profiles do not correspond with those, which were expected on the basis of usual theories. A solution equilibrium at the phase boundary could not be found. Received: 21 January 1999/Accepted: 4 May 1999  相似文献   

2.
 A new concept for flow visualization is demonstrated in which fluorescence from locally seeded iodine is viewed in the wake of simple aerodynamic models at Mach 6. Localized seeding is performed by painting a small area of a ceramic model with a tincture of iodine. When the model is injected into the flow, the adsorbed iodine is entrained into the boundary layer, follows the model contour, and ultimately mixes into the wake region. Planar “snapshots” of the wake flow are taken by exciting the iodine with an ArF excimer laser sheet at 193 nm and observing the fluorescence in the 210–600 nm region with an intensified CCD camera. Received: 17 July 1997/Accepted: 12 August 1998  相似文献   

3.
 A technique is described that measures the instantaneous three-dimensional temperature distribution in water using two-color laser-induced fluorescence (LIF). Two fluorescent dyes, Rhodamine B and Rhodamine 110, are used as temperature indicators. A laser light sheet scanned across the entire measurement volume excites the fluorescent dye, and an optical system involving a color beam splitter gives the intensity distribution of the individual fluorescent dyes on two separate monochrome CCD cameras. The ratio of these fluorescence intensities at each point of the image is calibrated against the temperature to eliminate the effect of the fluctuation of illuminating light intensity. A stable thermally stratified layer was measured by this system to evaluate the total accuracy of the measurement system. The random error of the measurement was ±1.4 K with 95% confidence. Measurements of thermal convection over a heated horizontal surface show temperature iso-surfaces having typical structures such as plumes, ridges and thermals. Received: 1 October 1997/Accepted: 23 March 1998  相似文献   

4.
The unsteady mixed convection boundary layer flow over a vertical cone is considered to investigate the combined effects of the buoyancy force, thermal and mass diffusion in the presence of the first order chemical reaction and surface mass transfer. The unsteadiness is caused by the time dependent free stream velocity varying arbitrarily with time. The governing boundary layer equations are transformed into a non-dimensional form by a group of non-similar transformations. The resulting system of coupled non-linear partial differential equations is solved numerically by the combination of quasi-linearization technique and an implicit finite difference scheme. Numerical computations are performed for different values of the parameters to display the velocity, temperature and concentration profiles graphically. Both accelerating and decelerating free stream velocities are considered. Numerical results are presented for the velocity, temperature and concentration profiles as well as for the skin-friction coefficient, local Nusselt number and local Sherwood number. The obtained results are compared with previously reported ones and are found to be in excellent agreement.  相似文献   

5.
6.
A steady laminar boundary layer flowing along a vertical plate immersed in a Darcy–Brinkman porous medium saturated with water at 4°C is studied. The plate temperature varies sinusoidally along the plate between 0 and 8°C where the density of water varies parabolically and is almost symmetrical at about 4°C. Except for the existence of the buoyancy force, it is assumed that either the plate moves upwards or the ambient water moves upwards (moving stream). The results are obtained with the direct numerical solution of the boundary layer equations taking into account the temperature dependence of water thermophysical properties (ρ, μ and c p). Results are presented for the wall temperature gradient and the wall shear stress along the plate for free convection and mixed convection. Temperature and velocity profiles are also presented.  相似文献   

7.
 A novel particle tracking system working with a high particle concentration for the measurement of flow fields beneath water waves is described. It features a 1–4 cm thick light sheet parallel to the main wave propagation direction so that the seeding particles stay long enough in the illuminated area to enable tracking over several wave periods. An area of up to 14.0×10.0 cm2 is observed by a CCD camera with up to 200 fields/s. The polychromatic scattering theory of small particles in a light sheet illumination is investigated, enabling the segmentation of individual particles at high particle concentration. Received: 12 July 1995/Accepted: 18 April 1997  相似文献   

8.
 A technique has been developed to measure void fraction using X-rays in a 10 cm thick pool of molten tin with gas injection at various flow rates. Visualization of the multiphase mixture using high energy X-rays can be performed at imaging rates of 220 fps with 256×256 pixel resolution or at 30 fps with 480×1128 pixel resolution. The images are subsequently processed to obtain two dimensional distributions of the chordal average void fraction in the mixture. The estimated relative uncertainty of the measurement is discussed in detail and shown to be of the order of 10% of the reported value. Received: 6 June 1997/Accepted: 2 December 1997  相似文献   

9.
Vertical profiles of suspended sediment concentration have been gathered in a laboratory flume using a 2.25 MHz acoustic transducer. The acoustic concentration profiler (ACP) was calibrated in a vertical duct for homogeneous concentrations of two uniformly sized sediments. The transducer was then transferred to a 6 m horizontal flume where concentration profiles were measured in steady and unsteady flows. For the steady flow tests, concentration measurements made with the ACP and with suction samplers are compared. The results demonstrate that the ACP provides an accurate method of non-intrusively measuring sediment concentrations of more than 2.5% by volume. Received: 24 September 1998/Accepted: 12 April 1999  相似文献   

10.
A boundary layer analysis is used to investigate the heat and mass transfer characteristics of mixed convection about a vertical flat plate embedded in a saturated porous medium under the coupled effects of thermal and mass diffusion. The plate is maintained at prescribed surface temperature/concentration (PST/PSC) or prescribed heat/mass flux (PHF/PMF). The nonsimilar governing equations are obtained by using a suitable transformation and solved by Keller box method. Numerical results for the local heat transfer rate and the local mass transfer rate are presented for various parameters. The local heat and mass transfer rates increase with increasing n and m and buoyancy parameter ξ. When buoyancy parameter ξ is very small (large) the value of local Nusselt and the local Sherwood number correspond with the pure forced (free) convection, respectively. Increasing buoyancy ratio N (or N *) increases the local heat and mass transfer rates. It is apparent that Lewis number has a pronounced effect on the local mass transfer rate than it does on the local heat transfer rate. Furthermore, increasing Lewis number decreases (increases) the local heat (mass) transfer rate. Received on 8 December 1997  相似文献   

11.
A technique for measuring near instantaneous concentration profiles of a fluid injected through a narrow inclined slot at the wall into a high unit Reynolds number flat plate turbulent boundary layer is discussed. The concentration profiles are determined by measuring the light intensity emitted from a fluorescent dye, premixed into the injectant flow, as the injectant convects through an excitation laser beam. The fluorescence intensity is quantified by an electronically shuttered single stage microchannel plate image intensifier coupled to a linear photodiode array. This instrumentation provided the high spatial and temporal resolution required for these boundary layer concentration profile measurements. The laser induced fluorescence technique is being used to study the diffusion of injected polymer solutions away from the near wall region of the boundary layer where these solutions are effective in reducing drag. The diffusion of slot injected water has also been examined and the present results are in excellent agreement with previous studies.  相似文献   

12.
 The mixing characteristics of a round, turbulent, unsteady jet were studied experimentally. A gravity-driven flow was created by releasing dyed fluid from a vertical tube into a large water tank. The jet velocity increased from zero to a maximum and then decreased continuously such that each run lasted about  s. The jet dilution was examined by an optical absorption technique that measured the line integral of concentration across the jet diameter. These measurements revealed that the portion of the unsteady jet corresponding to the deceleration phase dilutes more than the steady jet. The molecular scale mixing, as deduced from an acid-base neutralization reaction, corroborated the finding that the jet mixes in a shorter distance than the steady jet. Received: 22 August 1996/Accepted: 4 February 1997  相似文献   

13.
 We describe the capabilities of coherent high resolution radar to observe remotely the effects of an upwelling subsurface flow on the water surface. This observation is possible because the radar radiation backscatters very strongly from surface features with dimensions similar to its wavelength, in this case X-band at 0.03 m. This technique provides imaging capability with relatively high spatial resolution (∼0.3 m) and fast time sampling (∼0.006 s) over a large surface area. The processed data reveal both the line-of-sight velocity spectrum of moving water surface features, and their water surface radar backscatter cross-section. We believe that the surface features are generated by subsurface vortices oriented normal to the surface. The vortices are advected with the bulk flow of the jet. Our radar observations of the down-stream flow from a submerged waterjet that is directed parallel to the surface are consistent with those previously measured by laser velocimetry. Received: 25 February 1994/Accepted: 16 May 1996  相似文献   

14.
 We present experimental results using Filtered Rayleigh Scattering to make planar measurements of velocity, temperature and pressure in ambient air and in a Mach 2 free jet. The ambient air measurements are used to identify and calibrate experimental uncertainties. The Mach 2 measurements demonstrate the usefulness of the technique for making accurate planar measurements in a high speed flow. The measured values for velocity, temperature and pressure in the Mach 2 jet ranged, through a shock system, from 205 to 235 m/s, 150 to 170 K and 700 to 1000 torr, with estimated uncertainties of ±5.4 m/s, ±3.2 K and ±38 torr (±2 to 3%, ±2% and ±4–5%, respectively). Received: 10 December 1996/Accepted: 14 July 1997  相似文献   

15.
 The spatial-temporal progressions of the leading-edge stagnation, separation and reattachment points, and the state of the unsteady boundary layer developed on the upper surface of a 6 in. chord NACA 0012 airfoil model, oscillated sinusoidally within and beyond the static-stall angle, were measured using 140 closely-spaced, multiple hot-film sensors (MHFS). The MHFS measurements show that (i) the laminar separation point and transition were delayed with increasing α and the reattachment and relaminarization were promoted with decreasing α, relative to the static case, (ii) the pitchup motion helped to keep the boundary layer attached to higher angles of attack over that could be obtained statically, (iii) the dynamic stall process was initiated by the turbulent flow separation in the leading-edge region as well as by the onset of flow reversal in the trailing-edge region, and (iv) the dynamic stall process was found not to originate with the bursting of a laminar separation bubble, but with a breakdown of the turbulent boundary layer. The MHFS measurements also show that the flow unsteadiness caused by airfoil motion as well as by the flow disturbances can be detected simultaneously and nonintrusively. The MHFS characterizations of the unsteady boundary layers are useful in the study of unsteady separated flowfields generated by rapidly maneuvering aircraft, helicopter rotor blades, and wing energy machines. Received: 17 June 1997 / Accepted: 10 December 1997  相似文献   

16.
The heat and mass transfer characteristics of natural convection about a vertical surface embedded in a saturated porous medium subjected to a chemical reaction is numerically analyzed, by taking into account the diffusion-thermo (Dufour) and thermal-diffusion (Soret) effects. The transformed governing equations are solved by a very efficient numerical method, namely, a modified version of the Keller-box method for ordinary differential equations. The parameters of the problem are Lewis, Dufour and Soret numbers, sustentation parameter, the order of the chemical reaction n and the chemical reaction parameter γ. Local Nusselt number and local Sherwood number variations and dimensionless concentration profiles in the boundary layer are presented graphically and in tables for various values of problem parameters and it is concluded that γ and n play a crucial role in the solution.  相似文献   

17.
 Noninvasive measurement techniques were developed to obtain the surfactant concentration and the velocity field of a vortex pair interacting with a contaminated free surface. The optical method of second-harmonic generation (SHG) was utilized to determine the time-varying concentration of a surfactant at a point on the surface, and the established technique of digital particle image velocimetry (DPIV) was used for the measurement of the velocity field. The evolution of the initially uniform, insoluble monolayer along with the vorticity field are described. One of the present limitations is the temporal resolution of the concentration measurements which is of order 5 Hz. The extension of the SHG technique to high Reynolds number, turbulent flows is discussed. Received: 24 January 1996 / Accepted: 17 July 1996  相似文献   

18.
 An imaging technique that uses backlighting has been developed to measure drop sizes in annular two-phase flows with small concentrations of drops in the gas phase. Advantages over conventional photography are realized in that data collection and analysis times are shortened considerably, and consistent unbiased results can be expected. A magnification of 1.9 was used to measure drops above 50 μm. A drop size distribution was obtained for an air–water system as a superficial gas velocity of 30 m/s and a liquid flow of 20 g/s. The data are used to substantiate a theory for the rate of deposition. Received: 6 February 1997/Accepted: 3 February 1998  相似文献   

19.
The non-similar solution of an unsteady mixed convection laminar boundary layer flow over a vertical cone in the presence of non-uniform surface mass transfer through slot has been obtained while the axis of cone is inline with the flow. The unsteadiness is caused by the time dependent free stream velocity. The governing boundary layer equations are transformed into a non-dimensional form by a group of non-similar transformations. The resulting coupled non-linear partial differential equations have been solved numerically by the combination of quasi-linearization technique and an implicit finite difference scheme. Numerical computations are performed for different values of the parameters to display the velocity and temperature profiles graphically. Both accelerating and decelerating free stream velocities are considered. Numerical results are reported to display the effects of non-uniform single and double slot suction (injection) on skin friction and heat transfer coefficients at the wall. Further, the effects of Prandtl number, buoyancy and mass transfer (suction or injection) parameters at different stream-wise locations for various times on velocity and temperature profiles, and on skin friction and heat transfer coefficients are also presented in this paper.  相似文献   

20.
Particle image velocimetry with optical flow   总被引:4,自引:0,他引:4  
 An optical Flow technique based on the use of Dynamic Programming has been applied to Particle Image Velocimetry thus yielding a significant increase in the accuracy and spatial resolution of the velocity field. Results are presented for calibrated synthetic sequences of images and for sequences of real images taken for a thermally driven flow of water with a freezing front. The accuracy remains better than 0.5 pixel/frame for tested two-image sequences and 0.2 pixel/frame for four-image sequences, even with a 10% added noise level and allowing 10% of particles of appear or disappear. A velocity vector is obtained for every pixel of the image. Received: 18 July 1997/Accepted: 5 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号