首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective separation of Cu(II) ions from aqueous solution was accomplished with a new type of ion-imprinted silica nanotube membrane. A study on its capability for adsorption and selective recognition showed that best selectivity coefficient over Zn(II) ion was over 150, which is much higher than those of control silica nanotube membranes. The largest relative selectivity coefficient over Zn(II) was >200. The new membrane also possess a fast kinetics for the removal of Cu(II) from aqueous solution, an equilibrium period of <30 min, and suitability for repeated use. Hence, the new membrane acts as an effective material for highly selective preconcentration and separation of Cu(II) ion.  相似文献   

2.
Li F  Li J  Zhang S 《Talanta》2008,74(5):1247-1255
An interfacial organic–inorganic hybridization concept was applied to the preparation of a new spherical imprinted material for protein recognition. The functional biopolymer chitosan (CS), shaped as microsphere and high-density cross-linked, constituted of the polysaccharide core for surface imprinting. After the model template protein, bovine serum albumin, was covalently immobilized by forming imine bonds with the functional amine groups of CS, two kinds of organic siloxane (3-aminopropyltrimethoxysiloxane: APTMS, and tetraethoxysiloxane: TEOS) assembled and polymerized on the polysaccharide–protein surface via sol–gel process in aqueous solution at room temperature. After template removal, the protein-imprinted sol–gel surface exhibited a prevalent preference for the template protein in adsorption experiments, as compared with four contrastive proteins. Bioinformatics methods were also employed to investigate the imprinting process and the recognition effect. The influence of siloxane type, pH, siloxane/water ratio on template removal and recognition selectivity was assessed. Under optimized imprinting conditions, a large quantity of well-distributed pores was observed on the immobilized-template imprinted surface. The surface-imprinted adsorbent offered a fast kinetics for template re-adsorption and could be reused. Compared with the imprinted material prepared with free-template, material prepared with immobilized-template possessed higher adsorption capacity towards template protein. Easy preparation of the described imprinted material, high affinity and good reusability make this approach attractive and broadly applicable in biotechnology for down-stream processing and biosensor.  相似文献   

3.
4.
5.
Journal of Sol-Gel Science and Technology - In this work, a ZnO-based molecularly imprinted photocatalyst (MIP) bearing acid Lewis sites (Al) was evaluated for photocatalytic oxidation of glycerol....  相似文献   

6.
Electrochemical synthesis and signal generation dominate among the almost 1200 articles published annually on protein-imprinted polymers. Such polymers can be easily prepared directly on the electrode surface, and the polymer thickness can be precisely adjusted to the size of the target to enable its free exchange. In this architecture, the molecularly imprinted polymer (MIP) layer represents only one ‘separation plate’; thus, the selectivity does not reach the values of ‘bulk’ measurements. The binding of target proteins can be detected straightforwardly by their modulating effect on the diffusional permeability of a redox marker through the thin MIP films. However, this generates an ‘overall apparent’ signal, which may include nonspecific interactions in the polymer layer and at the electrode surface. Certain targets, such as enzymes or redox active proteins, enables a more specific direct quantification of their binding to MIPs by in situ determination of the enzyme activity or direct electron transfer, respectively.  相似文献   

7.
An eight channel molecularly imprinted polymer sensor array was prepared that was able to differentiate six different aryl amine analytes, including diastereomers with 94% accuracy.  相似文献   

8.
9.
Synthetic materials that can specifically recognize proteins will find wide application in many fields.In this report,bovine serum albumin was chosen as the template protein.Acrylamide and N,N’-methylenebisacrylamide were employed as the functional and cross-linker monomers,respectively.Molecularly imprinted macroporous monolithic materials that can preferentially bind the template protein in an aqueous environment were prepared by combination of molecular imprinting technique and freezing/thawing preparation method.The resulted imprinted macroporous monolithic columns were evaluated by utilizing as stationary phase in high performance liquid chromatography and solid-phase extraction materials.The experimental results indicated that the imprinted macroporous monolithic column exhibited good recognition for template protein,as compared with the control protein(hemoglobin),whereas the non-imprinted polymer(prepared under the same conditions except without addition template protein) had no selective properties.  相似文献   

10.
Molecularly imprinted adsorbents for positional isomer separation.   总被引:3,自引:0,他引:3  
2,4-Dihydroxybenzophenone (2,4-DHB) imprinted polymers were synthesized by surface imprinting technique, using allyl alcohol as the functional monomer. The polymers showed a very high selectivity for 2,4-DHB when compared with various positional isomers such as 2-HB, 2,2'-DHB, 4,4'-DHIB and 4,4'-DMB. Solvents were found to affect the selectivity as well as sorption capacity in the case of surface imprinted polymers. The selectivities decreased drastically when the imprint cavity was blocked. This validated the importance of the cavity and the rebinding interactions in governing the selectivity in the case of MIPs. The surface imprinted polymers also showed a high selectivity under non-equilibrium conditions thereby making them suitable adsorbents for industrial separations.  相似文献   

11.
Molecular imprinting is an attractive biomimetic approach that creates specific recognition sites for the shape and functional group arrangement to template molecules. The purpose of this study is to prepare cytochrome c-imprinted poly(hydroxyethyl methacrylate) (PHEMA)-based supermacroporous cryogel which can be used for the separation of cytochrome c from protein mixtures. N-Methacryloyl-(L)-histidinemethylester (MAH) was used as the metal-coordinating monomer. In the first step, Cu(2+) was complexed with MAH, and the cytochrome c imprinted PHEMA (MIP) cryogel was prepared by free radical cryopolymerization initiated by N,N,N',N'-tetramethylene diamine at -12°C. After polymerization is completed, the template cytochrome c molecules were removed from the MIP cryogel using 0.5 M NaCl solution. The maximum cytochrome c binding amount was 126 mg/g polymer. Selective binding studies were performed in the presence of lysozyme and bovine serum albumin. The relative selectivity coefficients of MIP cryogel for cytochrome c/lysozyme and cytochrome c/bovine serum albumin were 1.7 and 5.2 times greater than those of the non-imprinted PHEMA cryogel, respectively. The selectivity of MIP cryogel for cytochrome c was also confirmed with fast protein liquid chromatography. The MIP cryogel could be used many times with no remarkable decrease in cytochrome c binding capacity.  相似文献   

12.
We have developed a new class of synthetic membranes that consist of a porous polymeric support that contains an ensemble of gold nanotubes that span the thickness of the support membrane. The support is a commercially-available microporous polycarbonate filter with cylindrical nanoscopic pores. The gold nanotubes are prepared by electroless deposition of Au onto the pore walls, that is, the pores acts as templates for the nanotubes. We have shown that by controlling the Au deposition time, Au nanotubes that have effective inside diameters of molecular dimensions (<1 nm) can be prepared. These nanotube membranes can be used to cleanly separate small molecules on the basis of molecular size. Furthermore, use of these membranes as a novel electrochemical sensor is also discussed. This new sensing scheme involves applying a constant potential across the Au nanotube membrane and measuring the drop in the transmembrane current upon the addition of the analyte. This paper reviews our recent progress on size-based based transport selectivity and sensor applications in this new class of membranes.  相似文献   

13.
Molecularly imprinted polymers in analytical chemistry   总被引:9,自引:0,他引:9  
Haupt K 《The Analyst》2001,126(6):747-756
  相似文献   

14.
Molecularly imprinted polymers as biomimetic catalysts   总被引:1,自引:0,他引:1  
The quest for synthetic biomimetic catalysts able to complement the activity of enzymes has attracted substantial research efforts, and the molecular imprinting approach is one of the attractive techniques that are currently being investigated. In the last 3 years, there has been considerable interest in studying in greater detail the parameters that control and influence the catalytic activity of imprinted polymers and applying molecular imprinting to a wider range of polymeric matrices. This article reports on some of the interesting examples available in the literature regarding the use of metal-containing polymers, microgels and nanogels and thermoresponsive polymers.  相似文献   

15.
A novel methodology has been developed which enables optimization of membrane separations. In multi-component separation processes, sieving coefficients for the individual solutes, defined as the ratio of the filtrate and feed concentrations, tend to reach optimum values under different process conditions. It is not possible to determine a priori the pair of sieving coefficients which will give the best combination of product yield and purification for a given application. A purification factor-yield diagram for such an optimization has been developed which utilizes a family of curves representing two dimensionless numbers plotted on yield versus purification-factor coordinates. Analysis can be performed with knowledge of only three experimental variables: the filtrate flux and the two solute sieving coefficients. Complete optimization of membrane processes can be achieved by combining these variables with membrane area, process time, and retentate-volume constraints. The methodology should be applicable to ultrafiltration, microfiltration, and high-performance tangential flow (selective) filtration processes.  相似文献   

16.
Molecularly imprinted beads by surface imprinting   总被引:1,自引:0,他引:1  
Molecular imprinting is a state-of-the-art technique for imparting molecular recognition properties to a synthetic polymeric matrix. Conventionally, the technique is easily carried out using bulk imprinting, where molecularly imprinted polymers (MIPs) are prepared in large chunks and post-treatment processes like grinding and sieving are then required. However, this strategy tends to produce sharp-edged, irregular MIP bits with a limited scope of direct application. In addition, due to the creation of binding sites within the polymeric bulk, the issue of the hindrance of adsorbate diffusion (especially in the case of macromolecules) during template rebinding makes the MIPs prepared through this approach unsuitable for practical applications. Thus over the years, many efforts to address the limitations of conventional molecular imprinting techniques have resulted in new imprinting methodologies. Systems like suspension and precipitation polymerization, where MIPs with tunable morphologies can be prepared, have been developed. Additionally, strategies like surface imprinting have also been employed. Ultimately, both of these approaches have been combined to prepare regularly shaped surface-imprinted MIP beads. Such an approach incorporates the advantages of both methodologies at the same time. Given their desirable physical morphologies and favorable adsorption kinetics, MIPs prepared in this manner show significant promise for industrial applications. Therefore, they will be the main focus of this review.  相似文献   

17.
Molecularly imprinted polymers for sample preparation: A review   总被引:1,自引:0,他引:1  
In spite of the huge development of analytical instrumentation during last two decades, sample preparation is still nowadays considered the bottleneck of the whole analytical process. In this regard, efforts have been conducted towards the improvement of the selectivity during extraction and/or subsequent clean-up of sample extracts. Molecularly imprinted polymers (MIPs) are stable polymers with molecular recognition abilities, provided by the presence of a template during their synthesis and thus are excellent materials to provide selectivity to sample preparation. In the present review, the use of MIPs in solid-phase extraction and solid-phase microextraction as well as its recent incorporation to other extraction techniques such as matrix-solid phase dispersion and stir bar sorptive extraction, among others, is described. The advantages and drawbacks of each methodology as well as the future expected trends are discussed.  相似文献   

18.
The polymers selective to six different steroids (testosterone, Δ4-androstene-3,17-dione, 1,4-androstadiene-3,17-dione, β-estradiol, progesterone, testosterone propionate) have been synthesized using molecular imprinting based on noncovalent interactions. Analysis of the influence of structural features of the steroids under study has shown that molecules with a relatively rigid structure and the OH group at C-17 position are the most efficient templates for methacrylic acid-containing imprinted polymers. The chromatographic study of the polymers synthesized has demonstrated a strong dependence of the selectivity and intensity of interaction with analytes on the composition of solvents used both as porogen and chromatographic mobile phase. To obtain polymers with highly selective recognition sites and to create the optimal conditions for molecular recognition, all possible interactions (between template and functional monomer, template and solvent, solvent and functional monomer) should be taken into account. <?TF="palat-i"> The batch rebinding study of testosterone by the imprinted polymer in acetonitrile has revealed some heterogeneity of recognition sites, and permitted determination of Kass = 1.05 × 104 M −1, ΔG° = −5.4 kcal/mol and N = 1.2 μmol/g for high-affinity sites and Kass = 0.33 × 104 M −1, ΔG° = −4.8 kcal/mol and N = 2.2 μmol/g for low-affinity sites. <?TF="palat-i"> The results obtained show how it is possible to regulate in different modes the molecular recognition by imprinted polymers as well as to fabricate polymers possessing the necessary properties depending on their practical application.© 1998 John Wiley & Sons, Ltd.  相似文献   

19.
In this report, we describe the synthesis of a molecularly imprinted polymer (MIP) nanotube membrane, using a porous anodic alumina oxide (AAO) membrane by surface-initiated atom transfer radical polymerization (ATRP). The use of a MIP nanotube membrane in chemical separations gives the advantage of high affinity and selectivity. Furthermore, because the molecular imprinting technique can be applied to different kinds of target molecules, ranging from small organic molecules to peptides and proteins, such MIP nanotube membranes will considerably broaden the application of nanotube membranes in chemical separations and sensors. This report also shows that the ATRP route is an efficient procedure for the preparation of molecularly imprinted polymers. Furthermore, the ATRP route works well in its formation of MIP nanotubes within a porous AAO membrane. The controllable nature of ATRP allows the growth of a MIP nanotube with uniform pores and adjustable thickness. Thus, using the same route, it is possible to tailor the synthesis of MIP nanotube membranes with either thicker MIP nanotubes for capacity improvement or thinner nanotubes for efficiency improvement.  相似文献   

20.
A new molecularly imprinted polymer (MIP) was specifically synthesized as a smart material for the recognition of metformin hydrochloride in solid-phase extraction. Particles of this MIP were packed into a stainless-steel tubing (50 mm x 0.8 mm i.d.) equipped with an exit frit. This micro-column was employed in the development of a molecularly imprinted solid-phase extraction (MISPE) method for metformin determination. The MISPE instrumentation consisted of a micrometer pump, an injector valve equipped with a 20-microl sample loop, a UV detector, and an integrator. With CH3CN as the mobile phase flowing at 0.5 ml/min, 95 +/- 2% binding could be achieved for 1200 ng of metformin from one injection of a phosphate-buffered sample solution (pH 2.5). Methanol + 3% trifluoroacetic acid was good for quantitative pulsed elution (PE) of the bound metformin. The MISPE-PE method, with UV detection at 240 nm, afforded a detection limit of 16 ng (or 0.8 microg/ml) for metformin. However, the micro-column interacted indiscriminately with phenformin with a 49 +/- 2% binding. A systematic investigation of binding selectivity was conducted with respect to sample composition (including the solvent, matrix, pH, buffer and surfactant effects). An intermediate step of differential pulsed elution used acetonitrile with 5% picric acid to remove phenformin and other structural analogues. A final pulsed elution of metformin for direct UV detection was achieved using 3% trifluoroacetic acid in methanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号