首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complete system of hydrodynamic equations that describe the free surface of an inviscid fluid, a tangential discontinuity, and the development of the hydrodynamic instability of a reaction front is reduced to a closed system of surface equations using Lagrangian variables, special integrals of motion, and their analogues. The vorticity is shown to play a fundamental role in the pattern of motion of hydrodynamic discontinuities, imparting a differential form to the equations. In the isentropic approximation, it is demonstrated how to take into account the fluid density oscillations caused by this motion. The derived system of equations is consistent with the previously known analytical solutions obtained in special cases.  相似文献   

2.
It has been shown that the complete system of hydrodynamic equations describing the position of the steady-state reaction front in a two-dimensional incompressible flow can be reduced to a closed system of surface equations using the method for reducing the dimension in overdetermined systems of differential equations. This system of surface equations allows the determination of the position of the steady-state front and all other quantities characterizing a hydrodynamic flow through it.  相似文献   

3.
4.
A second order front tracking method is developed for solving the hyperbolic system of Euler equations of inviscid fluid dynamics numerically. Meshless front tracking methods are usually limited to first order accuracy, since they are based on a piecewise constant approximation of the solution. Here second order convergence is achieved by deriving a piecewise linear reconstruction of the piecewise constant front tracking solution. The linearization is performed by decomposing the front tracking solution into its wave components and by linearizing the wave solutions separately. In order to construct a physically correct linearization, the physical phenomena of the front are taken into account in terms of the front types of the previously developed improved front interaction model. This front interaction model is also extended to include front numbers used in the wave decomposition. It is illustrated numerically for Sod’s Riemann problem, the two interacting blast waves problem, and a two-dimensional supersonic airfoil flow validation study that the proposed front tracking method achieves second order convergence also in the presence of strong discontinuities and their interactions.  相似文献   

5.
Autocatalytic reaction fronts generate density gradients that may lead to convection. Fronts propagating in vertical tubes can be flat, axisymmetric, or nonaxisymmetric, depending on the diameter of the tube. In this paper, we study the transitions to convection as well as the stability of different types of fronts. We analyze the stability of the convective reaction fronts using three different models for front propagation. We use a model based on a reaction-diffusion-advection equation coupled to the Navier-Stokes equations to account for fluid flow. A second model replaces the reaction-diffusion equation with a thin front approximation where the front speed depends on the front curvature. We also introduce a new low-dimensional model based on a finite mode truncation. This model allows a complete analysis of all stable and unstable fronts.  相似文献   

6.
7.
In heavy nuclei where the thickness of the diffused edge is relatively small, a certain sharp effective surface can be defined which characterizes the shape of the nucleus, and it can be considered as a collective dynamic variable. It is shown that the problem of fluid dynamics can be simplified by reducing it to simple linearized equations for the dynamics in the nuclear interior and boundary conditions set at the effective dynamic sharp surface of the density distribution. These conditions are derived from the fluid dynamical equations. Transitional densities obtained from this simple model are compared with the numerical solution of fluid dynamical equations.  相似文献   

8.
We study the dynamics of the noncommutative fluid in the Snyder space perturbatively at the first order in powers of the noncommutative parameter. The linearized noncommutative fluid dynamics is described by a system of coupled linear partial differential equations in which the variables are the fluid density and the fluid potentials. We show that these equations admit a set of solutions that are monochromatic plane waves for the fluid density and two of the potentials and a linear function for the third potential. The energy–momentum tensor of the plane waves is calculated.  相似文献   

9.
This paper proposes a solution to Bloch NMR flow equations in biomedical fluid dynamics using a new set of real polynomials. In fact, the authors conjugated their efforts in order to take benefit from similarities between independent Bloch NMR flow equations yielded by a recent study and the newly proposed characteristic differential equation of the m-Boubaker polynomials. The main goal of this study is to establish a methodology of using mathematical techniques so that the accurate measurement of blood flow in human physiological and pathological conditions can be carried out non-invasively and becomes simple to implement in medical clinics. Specifically, the polynomial solutions of the derived Bloch NMR equation are obtained for use in biomedical fluid dynamics. The polynomials represent the T2-weighted NMR transverse magnetization and signals obtained in terms of Boubaker polynomials, which can be an attractive mathematical tool for simple and accurate analysis of hemodynamic functions of blood flow system. The solutions provide an analytic way to interpret observables made when the rF magnetic fields are designed based on the Chebichev polynomials. The representative function of each component is plotted to describe the complete evolution of the NMR transverse magnetization component for medical and biomedical applications. This mathematical technique may allow us to manipulate microscopic blood (cells) at nano-scale. We may be able to theoretically simulate nano-devices that may travel through tiny capillaries and deliver oxygen to anemic tissues, remove obstructions from blood vessels and plaque from brain cells, and even hunt down and destroy viruses, bacteria, and other infectious agents.  相似文献   

10.
We prove the existence of global solutions to a coupled system of Navier–Stokes, and reaction-diffusion equations (for temperature and mass fraction) with prescribed front data on an infinite vertical strip or tube. This system models a one-step exothermic chemical reaction. The heat release induced volume expansion is accounted for via the Boussinesq approximation. The solutions are time dependent moving fronts in the presence of fluid convection. In the general setting, the fronts are subject to intensive Rayleigh-Taylor and thermal-diffusive instabilities. Various physical quantities, such as fluid velocity, temperature, and front speed, can grow in time. We show that the growth is at most for large time t by constructing a nonlinear functional on the temperature and mass fraction components. These results hold for arbitrary order reactions in two space dimensions and for quadratic and cubic reactions in three space dimensions. In the absence of any thermal-diffusive instability (unit Lewis number), and with weak fluid coupling, we construct a class of fronts moving through shear flows. Although the front speeds may oscillate in time, we show that they are uniformly bounded for large t. The front equation shows the generic time-dependent nature of the front speeds and the straining effect of the flow field. Received: 15 January 1996 / Accepted: 2 September 1997  相似文献   

11.
The properties of self-gravitating distributions of an ideal fluid charged by a vector field which is either massive or massless, i.e., electromagnetic, are considered taking account of the spin properties of the vector field in the framework of the Einstein-Cartan theory of gravitation. Conditions for equilibrium are found and the corresponding exact solutions are obtained. A complete system of first integrals of the corresponding equations of motion is found for dynamical distributions in the absence of pressure. A theorem on the correspondence between the dynamics of an electrically charged ideal fluid with a limiting equation of state and the dynamics of a free massive vector field is also proved.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 7–11, August, 1979.  相似文献   

12.
We show that front motion can be induced by noise in a spatially extended excitable system with a global constraint. Our model system is a semiconductor superlattice exhibiting complex dynamics of electron accumulation and depletion fronts. The presence of noise induces a global change in the dynamics of the system forcing stationary fronts to move through the entire device. We demonstrate the effect of coherence resonance in our model; i.e., there is an optimal level of noise at which the regularity of front motion is enhanced. Physical insight is provided by relating the space-time dynamics of the fronts with a phase-space analysis.  相似文献   

13.
V. P. Pastukhov 《JETP Letters》1998,67(11):940-946
A simplified system of MHD equations describing the nonlinear dynamics of a toroidal plasma in a high magnetic field is obtained by correct elimination of the fast magnetosonic oscillations. In contrast to earlier analogs (Kadomtsev-Pogutse, Strauss, and other equations), the symmetries and the corresponding conservation laws characteristic of the initial complete system of MHD equations are preserved in the system of equations obtained here. This makes it possible to use the system obtained here to analyze the dynamics of plasma with flow and to avoid error accumulation in the analysis of the long-time evolution of disturbances.  相似文献   

14.
Zhi Zhu He 《Annals of Physics》2010,325(2):359-366
This paper presents a theoretical investigation of dynamics of interface (wave front) in three-dimensional (3D) reaction-diffusion (RD) system for bistable media with anisotropy constructed by means of anisotropic surface tension. An equation of motion for the wave front is derived to carry out stability analysis of transverse perturbations, which discloses mechanism of pattern formation such as labyrinthine in 3D bistable media. Particularly, the effects of anisotropy on wave propagation are studied. It was found that, sufficiently strong anisotropy can induce dynamical instabilities and lead to breakup of the wave front. With the fast-inhibitor limit, the bistable system can further be described by a variational dynamics so that the boundary integral method is adopted to study the dynamics of wave fronts.  相似文献   

15.
16.
《Physics letters. A》1997,229(5):313-316
It is shown that the nonlinear equations governing the dynamics of weakly interacting electromagnetic disturbances in nonuniform magnetoplasmas can be written as a set of three coupled nonlinear equations, which are a generalization of the Lorentz-Stenflo equations. The chaotic fluid behavior of electromagnetic turbulence is studied on the basis of the newly derived nonlinear equations.  相似文献   

17.
An analytic treatment of the breakdown front is given, using a simplified set of fluid equations, and assuming the existence of a steady-state reference frame. Key quantities are derived, such as the densities at the peak and far from the peak, and the scale lengths for the main variables close to the front. These results should permit testing of computational models, which should employ a more accurate set of fluid equations, and may be useful in deriving macroscopic models which do not resolve the length scales identified.  相似文献   

18.
We investigate flux front penetration in a disordered type-II superconductor by molecular dynamics simulations of interacting vortices and find scaling laws for the front position and the density profile. The scaling can be understood by performing a coarse graining of the system and writing a disordered nonlinear diffusion equation. Integrating numerically the equation, we observe a crossover from flat to fractal front penetration as the system parameters are varied. The value of the fractal dimension indicates that the invasion process is described by gradient percolation.  相似文献   

19.
20.
Radha Balakrishnan 《Pramana》1997,48(1):189-204
We briefly review the nonlinear dynamics of diverse physical systems which can be described in terms of moving curves and surfaces. The interesting connections that exist between the underlying differential geometry of these systems and the corresponding nonlinear partial differential equations are highlighted by considering classic examples such as the motion of a vortex filament in a fluid and the dynamics of a spin chain. The association of the dynamics of a non-stretching curve with a hierarchy of completely integrable soliton-supporting equations is discussed. The application of the surface embeddability approach is shown to be useful in obtaining such connections as well as exact solutions of some nonlinear systems such as the Belavin-Polyakov equation and the inhomogeneous Heisenberg chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号