首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is devoted to an investigation of nonlinearly charged dilatonic black holes in the context of gravity’s rainbow with two cases: (1) by considering the usual entropy, (2) in the presence of first order logarithmic correction of the entropy. First, exact black hole solutions of dilatonic Born–Infeld gravity with an energy dependent Liouville-type potential are obtained. Then, thermodynamic properties of the mentioned cases are studied, separately. It will be shown that although mass, entropy and the heat capacity are modified due to the presence of a first order correction, the temperature remains independent of it. Furthermore, it will be shown that divergences of the heat capacity, hence phase transition points are also independent of a first order correction, whereas the stability conditions are highly sensitive to variation of the correction parameter. Except for the effects of a first order correction, we will also present a limit on the values of the dilatonic parameter and show that it is possible to recognize AdS and dS thermodynamical behaviors for two specific branches of the dilatonic parameter. In addition, the effects of nonlinear electromagnetic field and energy functions on the thermodynamical behavior of the solutions will be highlighted and dependency of critical behavior, on these generalizations will be investigated.  相似文献   

2.
The Klein-Gordon equation is applied to investigate superradiance around a dilatonic variant of dyonic black holes, a type of black holes whose extremal limits are justified for the S-wave approximation. The result is: The dilaton field boosts the superradiance.  相似文献   

3.
By using the method of quantum statistics, we directly derive the partition function of bosonic and fermionic field in dilatonic black hole and obtain the integral expression of the black hole's entropy, which avoids the difficulty in solving the wave equationof various particles. Then via the improved brick-wall method, membrane model, we obtain that we can choose proper parameter in order to let the thickness of film tend to zero and have it approach the surface of its horizon. Consequently the entropy of the black hole is proportional to the area of its horizon. In our result, the stripped term and the divergent logarithmic term in the original brick-wall method no longer exist. In the whole process, physics idea is clear; calculation is simple. We offer a new simple and direct way of calculating the entropy of different complicated black holes.  相似文献   

4.
It is well known that Hawking radiation can be treated as a quantum tunneling process of particles from the event horizon of black hole. In this paper, we attempt to apply the massive vector bosons tunneling method to study the Hawking radiation from the non-rotating and rotating dilaton black holes. Starting with the Proca field equation that govern the dynamics of massive vector bosons, we derive the tunneling probabilities and radiation spectrums of the emitted vector bosons from the static spherical symmetric dilatonic black hole, the rotating Kaluza-Klein black hole, and the rotating Kerr-Sen black hole. Comparing the results with the blackbody spectrum, we satisfactorily reproduce the Hawking temperatures of these dilaton black holes, which are consistent with the previous results in the literature.  相似文献   

5.
We investigate extremal charged black hole solutions in the four-dimensional string frame Gauss-Bonnet gravity with the Maxwell field and the dilaton. Without curvature corrections, the extremal electrically charged dilatonic black holes have singular horizon and zero Bekenstein entropy. When the Gauss-Bonnet term is switched on, the horizon radius expands to a finite value provided curvature corrections are strong enough. Below a certain threshold value of the Gauss-Bonnet coupling the extremal black hole solutions cease to exist. Since decreasing Gauss-Bonnet coupling corresponds to decreasing string coupling g s , the situation can tentatively be interpreted as classical indication on the black hole—string transition. Previously the extremal dilaton black holes were studied in the Einstein-frame version of the Gauss-Bonnet gravity. Here we work in the string frame version of the theory with the S-duality symmetric dilaton function as required by the heterotic string theory. The article is published in the original.  相似文献   

6.
A detailed analysis of the motion of the test particles around dilatonic black hole has been done. Here we have studied test particles with various masses, charges and dilatonic charges in equilibrium and non equilibrium situations.  相似文献   

7.
We studied the influence of dilaton field on the dynamical collapse of a charged scalar one. Different values of the initial amplitude of dilaton field as well as the altered values of the dilatonic coupling constant were considered. We described structures of spacetimes and properties of black holes emerging from the collapse of electrically charged scalar field in dilaton gravity. Moreover, we provided a meaningful comparison of the collapse in question with the one in Einstein gravity, when dilaton field is absent and its coupling with the scalar field is equal to zero. The course and results of the dynamical collapse process seem to be very sensitive to the amplitude of dilaton field and to the value of the coupling constant in the underlying theory.  相似文献   

8.
In this work we investigate the consequences of running gravitational coupling on the properties of rotating black holes. Apart from the changes induced in the space-time structure of such black holes, we also study the implications to Penrose process and geodetic precession. We are motivated by the functional form of gravitational coupling previously investigated in the context of infra-red limit of asymptotic safe gravity theory. In this approach, the involvement of a new parameter \({\tilde{\xi }}\) in this solution makes it different from Schwarzschild black hole. The Killing horizon, event horizon and singularity of the computed metric is then discussed. It is noticed that the ergosphere is increased as \({\tilde{\xi }}\) increases. Considering the black hole solution in equatorial plane, the geodesics of particles, both null and time like cases, are explored. The effective potential is computed and graphically analyzed for different values of parameter \({\tilde{\xi }}\). The energy extraction from black hole is investigated via Penrose process. For the same values of spin parameter, the numerical results suggest that the efficiency of Penrose process is greater in quantum corrected gravity than in Kerr Black Hole. At the end, a brief discussion on Lense–Thirring frequency is also done.  相似文献   

9.
We study the center-of-mass energy of the particles colliding in the vicinity of acceleration and event horizons of the Plebanski and Demianski class of black holes. We calculate the collision energy of uncharged particles in the center-of-mass frame that are freely falling along the equatorial plane of a charged accelerating and rotating black hole with an NUT parameter. This energy turns out to be infinite in the non-extremal case, while in the extremal case, it becomes infinitely large near the event horizon only if the particle has the critical angular momentum. We conclude that the center-of-mass energy depends on the rotation and the NUT parameter.  相似文献   

10.
In this paper we calculate the center-of-mass energy of two colliding test particles near the rotating and non-rotating Horava–Lifshitz black hole. For the case of a slowly rotating KS solution of Horava–Lifshitz black hole we compare our results with the case of Kerr black holes. We confirm the limited value of the center-of-mass energy for static black holes and unlimited value of the center-of-mass energy for rotating black holes. Numerically, we discuss temperature dependence of the center-of-mass energy on the black hole horizon. We obtain the critical angular momentum of particles. In this limit the center-of-mass energy of two colliding particles in the neighborhood of the rotating Horava–Lifshitz black hole could be arbitrarily high. We found appropriate conditions where the critical angular momentum could have an orbit outside the horizon. Finally, we obtain the center-of-mass energy corresponding to this circle orbit.  相似文献   

11.
We apply the null-geodesic method to investigate tunneling radiation of charged and magnetized massive particles from Taub-NUT-Reissner-Nordström black holes endowed with electric as well as magnetic charges in Anti-de Sitter (AdS) spaces. The geodesics of charged massive particle tunneling from the black hole is not lightlike, but can be determined by the phase velocity. We find that the tunneling rate is related to the difference of Bekenstein-Hawking entropies of the black hole before and after the emission of particles. The entropy differs from just a quarter area at the horizon of black holes with NUT parameter. The emission spectrum is not precisely thermal anymore and the deviation from the precisely thermal spectrum can bring some information out, which can be treated as an explanation to the information loss paradox. The result can also be treated as a quantum-corrected radiation temperature, which is dependent on the black hole background and the radiation particle’s energy and charges.  相似文献   

12.
It has recently been pointed out that, under certain conditions, the energy of particles accelerated by black holes in the center-of-mass frame can become arbitrarily high. In this paper, we study the collision of two particles in the case of four-dimensional charged nonrotating, extremal charged rotating and near-extremal charged rotating Kaluza-Klein black holes as well as the naked singularity case in Einstein-Maxwell-dilaton theory. We find that the center-of-mass energy for a pair of colliding particles is unlimited at the horizon of charged nonrotating Kaluza-Klein black holes, extremal charged rotating Kaluza-Klein black holes and in the naked singularity case.  相似文献   

13.
Scattering of particles in the gravitational field of rotating black holes is considered. It is shown that scattering energy of particles in the centre of mass system can obtain very large values not only for extremal black holes but also for nonextremal ones. Extraction of energy after the collision is investigated. It is shown that due to the Penrose process the energy of the particle escaping the hole at infinity can be large. Contradictions in the problem of getting high energetic particles escaping the black hole are resolved.  相似文献   

14.
In this Letter, we study the dipole coupling effect of holographic fermion in a charged dilatonic black hole proposed by Gubser and Rocha (2010) [1]. It is found that the property of Fermi liquid is rigid under perturbation of dipole coupling, and the Fermi momentum is linearly shifted. A gap is dynamically generated as the coupling becomes large enough and the Fermi surface ceases to exist as the bulk dipole coupling further increases.  相似文献   

15.
静态球对称黑洞的热质点模型及辐射功率   总被引:4,自引:0,他引:4       下载免费PDF全文
孟庆苗  蒋继建  王帅 《物理学报》2009,58(11):7486-7490
利用静态球对称黑洞的热质点模型,研究了黑洞的热辐射规律,得到了当η取固有厚度时,对所有Schwarzschild黑洞,其辐射功率都相同,其视界处的辐射能通量与黑洞的质量的平方成反比,而距黑洞遥远的观察者所接收到的辐射能通量与观测者到黑洞的距离的平方成反比; Reissner-Nordstrm黑洞视界处的辐射能通量和辐射功率不仅与黑洞的质量有关,还与黑洞的电荷有关,而距黑洞遥远的观察者所接收到的辐射能通量,当截断的固有厚度η、黑洞的质量m和电荷Q取定后与观测者到黑洞之间的距离的 关键词: 静态球对称黑洞 热质点模型 辐射功率 辐射能通量  相似文献   

16.
A detailed investigation of Gauss-Bonnet theory has been done from a different perspective. At first, the standard energy conditions are discussed and modified forms have been presented. Then some cosmological solutions have been obtained in 5D for perfect fluid assuming that the extra dimensional metric coefficient decreases with time. For some particular choice of the parameters, exponential solutions are obtained and finally, Cosmic No-Hair Conjecture has been proved for Gauss-Bonnet dilatonic scalar coupled to Einstein gravity with coupling parameter growing linearly in time.  相似文献   

17.
18.
Quantum thermal effect of Dirac particles in an arbitrarily accelerating Kinnersley black hole is investigated by using the method of generalized tortoise coordinate transformation. Both the location and the temperature of the event horizon depend on the advanced time and the angles. The Hawking thermal radiation spectrum of Dirac particles contains a new term which represents the interaction between particles with spin and black holes with acceleration. This spin-acceleration coupling effect is absent from the thermal radiation spectrum of scalar particles.  相似文献   

19.
We study the coupling of massive scalar fields to matter in orbit around rotating black holes. It is generally expected that orbiting bodies will lose energy in gravitational waves, slowly inspiraling into the black hole. Instead, we show that the coupling of the field to matter leads to a surprising effect: because of superradiance, matter can hover into "floating orbits" for which the net gravitational energy loss at infinity is entirely provided by the black hole's rotational energy. Orbiting bodies remain floating until they extract sufficient angular momentum from the black hole, or until perturbations or nonlinear effects disrupt the orbit. For slowly rotating and nonrotating black holes floating orbits are unlikely to exist, but resonances at orbital frequencies corresponding to quasibound states of the scalar field can speed up the inspiral, so that the orbiting body sinks. These effects could be a smoking gun of deviations from general relativity.  相似文献   

20.
Recently, in the series of works a new effect of acceleration of particles by black holes has been found. Under certain conditions, the energy in the center-of-mass system can become infinitely large. The essential ingredient of such effect is the rotation of a black hole. In this work, it has been argued that the similar effect exists for a nonrotating but charged black hole even for the simplest case of radial motion of particles in the Reissner-Nordström background. All main features of the effect under discussion due to rotating black holes have their counterpart for the nonrotating charged ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号