首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of Ge–Te–CuI far infrared transmitting chalcohalide glasses were prepared by traditional melt-quenching method and the glass-forming region was determined. Properties measurements include density, DTA, XRD, SEM, Vis–NIR and infrared (IR) transmission spectra. The results show that with the addition of CuI, the glass-forming ability is improved and nearly 30 mol% CuI can be dissolved into the Ge20Te80?x(CuI)x glass system. The density and glass transition temperature of Ge–Te–CuI chalcohalide glasses are within the range 5.459–5.960 g cm?3 and 150–184 °C, respectively. These glasses all have wide optical transmission window from 1.8 to 25 μm and offer an alternative solution for far infrared transmitting materials.  相似文献   

2.
Emission spectra of SrH and SrD have been studied at high resolution using a Fourier transform spectrometer. The molecules have been produced in a high temperature furnace from the reaction of strontium metal vapor with H2/D2 in the presence of a slow flow of Ar gas. The spectra observed in the 18 000–19 500 cm?1 region consist of the 0–0 and 1–1 bands of the E2Π–X2Σ+ transition of the two isotopologues. A rotational analysis of these bands has been obtained by combining the present measurements with previously available pure rotation and vibration–rotation measurements for the ground state, and improved spectroscopic constants have been obtained for the E2Π state. The present analysis provides spectroscopic constants for the E2Π state as ΔG(½) = 1166.1011(15) cm?1, Be = 3.805503(32) cm?1, αe = 0.098880(47) cm?1, re = 2.1083727(89) Å for SrH, and ΔG(½) = 839.1283(23) cm?1, Be = 1.918564(15) cm?1, αe = 0.034719(23) cm?1, re = 2.1121943(83) Å for SrD.  相似文献   

3.
The absorption spectrum of the 18O3 isotopologue of ozone was recorded by CW-Cavity Ring Down Spectroscopy in the 6950–7125 cm?1 region. The typical noise equivalent absorption of the recordings is αmin ≈1×10?10 cm?1. The spectrum is dominated by three very weak bands: 3ν1+5ν3 near 7009 cm?1 and the ν2+7ν3 and 4ν2+5ν3 interacting bands near 7100 cm?1. In total 260, 206 and 133 transitions were assigned for the 3ν1+5ν3, ν2+7ν3 and 4ν2+5ν3 bands, respectively. The line positions of the 3ν1+5ν3 band were modelled using an effective Hamiltonian (EH) model involving two dark states – (6 0 1) and (2 5 2) – in interaction with the (3 0 5) bright state. The EH model developed for the ν2+7ν3 and 4ν2+5ν3 bands involves only the (0 1 7) and (0 4 5) interacting bright states. Line positions could be reproduced with rms deviations on the order of 0.01 cm?1 and the dipole transition moment parameters were determined for the three observed bands. The obtained set of parameters and the experimentally determined energy levels were used to generate a list of 984 transitions of the three bands which is provided as Supplementary Material.  相似文献   

4.
2.84 μm luminescence with a bandwidth of 213 nm is obtained in Dy3+ doped (ZrF4–BaF2–LaF3–AlF3–YF3) ZBLAY glass. Three intensity parameters and radiative properties have been determined from the absorption spectrum based on the Judd–Ofelt theory. The 2.84 μm emission characteristics and energy transfer mechanism upon excitation of a conventional 808 nm laser diode are investigated. The prepared Dy3+ doped ZBLAY glass possessing high predicted spontaneous transition probability (45.92 s?1) along with large calculated emission cross section (1.17×10?20 cm2) has potential applications in 2.8 μm laser.  相似文献   

5.
Photo-absorption spectrum of carbonyl sulphide (OCS) is recorded in 30,000–91,000 cm?1 (3300–1050 Å) region at an average resolution of 1.2 Å using Photo-physics beamline on the 450 MeV Indus-1 synchrotron radiation source at RRCAT Indore, India. Owing to significant absorption cross section dependence, spectra of OCS are recorded at various pressures (0.001–5 mbar) to optimize the S/N ratio for band systems appearing at different energy regions. The spectral region below 70,000 cm?1 has contributions from dissociation mechanism of the ground state of OCS and three valence band systems arising from promotion of a 3π electron to 4π and 10σ orbital. Improved S/N ratio helped in unambiguous assignment of the valence band progressions at 42,000–48,000 cm?1, 53,000–62,000 cm?1 and 63,500–70,000 cm?1 regions to the 1Δ←X1Σ+ transition, the relatively intense and sharp bands of 1Π←X1Σ+ transition and intense but broad bands of 1Σ+←X1Σ+ transition, respectively, and obtain the vibrational frequencies. Above 70,000 cm?1 Rydberg series arising from s, p, d and f orbitals converging to the ionic ground state X2Π of OCS+ (90,121 cm?1) are identified. Long progression in the first few members of the Rydberg series is suggestive of mixed valence character. Quantum defects are evaluated and used to discuss the nature of the molecular orbital. The present study provides a unifying picture of the VUV photo-absorption spectrum of OCS up to its first ionization limit.  相似文献   

6.
The absorption spectrum of methyl cyanide (CH3CN) has been measured in the near IR between 6000 and 8000 cm?1 with a resolution of 0.12 cm?1 using Fourier transform incoherent broadband cavity-enhanced absorption spectroscopy. The spectrum contains several weakly perturbed spectral regions; potential vibrational combination bands contributing to the spectrum are outlined. Line positions and cross-sections of CH3CN between 6814 and 7067 cm?1 have been measured at high-resolution of 0.001 cm?1 using diode laser based off-axis cavity-enhanced absorption spectroscopy. A total of 4630 new absorption lines of CH3CN are identified in this region. A value for the self-broadening coefficient has determined to be (3.3±0.2)×10?3 cm?1 mbar?1 for one isolated line at 7034.171 cm?1. Several line series have been identified in these regions and an autocorrelation analysis performed with a view to aiding future assignments of the rotational-vibrational transitions.  相似文献   

7.
The absorption spectrum of the 16O3 isotopologue of ozone was recorded in the 7000–7920 cm?1 region by using high sensitivity CW-Cavity Ring Down Spectroscopy (αmin  10?10 cm?1). This report is devoted to the analysis of the 7300–7600 cm?1 region dominated by four A-type bands: 6ν1 + ν3 centred around 7395 cm?1, 3ν1 + 5ν2 + ν3 and 2ν1 + 4ν2 + 3ν3 lying in the 7450 cm?1 region and 5ν1 + 2ν2 + ν3 centred around 7579 cm?1. 213 transitions of the 6ν1 + ν3 band were assigned and the corresponding line positions were modeled using an effective Hamiltonian including a Coriolis resonance interaction between the (601) upper state and a A-type dark state. The two very close 3ν1 + 5ν2 + ν3 and 2ν1 + 4ν2 + 3ν3 bands were analysed using a similar effective Hamiltonian scheme involving the anharmonic resonance coupling between the (351) and (243) states. For these two bands, 304 transitions were assigned. The modelling also includes a first Coriolis resonance interaction between the (351) bright state and the (530) dark state, and a second one between the (243) bright state and the (144) dark state. In the 7579 cm?1 region, 205 transitions of the 5ν1 + 2ν2 + ν3 band were assigned and modelled taking into account the Coriolis resonance interactions between the (521) upper state and the (700), (342) and (280) dark states.The dipole transition moment parameters of the four analysed bands were determined by a least-squares fit to the measured line intensities. For the studied band systems, the effective Hamiltonian and transition moment operator parameters were used to generate line lists provided as Supplementary Materials.  相似文献   

8.
A number of Ge17Ga4Sb10S69−xSex (x = 0, 15, 30, 45, 60, and 69) chalcogenide glasses have been synthesized by a melt-quenching method to investigate the effect of the Se content on thermo-mechanical and optical properties of these glasses. While it was found that the glass transition temperature (Tg) decreases from 261 to 174 °C with increasing Se contents, crystallization temperature (Tc) peak only be observed in glasses with Se content of x = 45. It was evident from the measurements of structural and physical properties that changes of the glass network bring an apparent impact on the glass properties. Also, the substitution of Se for S in Ge–Ga–Sb glasses can significantly improve the thermal stability against crystallization and broaden the infrared transmission region.  相似文献   

9.
Pure samples of cis,cis- and trans,trans-1,4-difluorobutadiene-2-d1 have been synthesized, and high-resolution (0.0015 cm?1) infrared spectra have been recorded for these nonpolar molecules in the gas phase. For the cis,cis isomer, the rotational structure in two C-type bands at 775 and 666 cm?1 and one A-type band at 866 cm?1 has been analyzed to yield a combined set of 2020 ground state combination differences (GSCDs). Ground state rotational constants fit to these GSCDs are A0 = 0.4195790(4), B0 = 0.0536508(8), and C0 = 0.0475802(9) cm?1. For the trans,trans isomer, three C-type bands at 856, 839, and 709 cm?1 have been investigated to give a combined set of 1624 GSCDs. Resulting ground state rotational constants for this isomer are A0 = 0.9390117(8), B0 = 0.0389225(4), and C0 = 0.0373778(3) cm?1. Small inertial defects confirm the planarity of both isomers in the ground state. Upper state rotational constants have been determined for most of the transitions. The ground state rotational constants for the two isotopologues will contribute to the data set needed for determining semiexperimental equilibrium structures for the nonpolar isomers of 1,4-difluorobutadiene.  相似文献   

10.
Fourier transform spectra of oxirane (ethylene oxide, c-C2H4O) have been recorded in the 730–1560 cm?1 (6.4–13.7 μm) spectral region using a Bruker IFS125HR spectrometer at a resolution of 0.0019 cm?1. A total of six vibration bands, ν15, ν12, ν5, ν3, ν10 and ν2, have been observed and analyzed. The corresponding upper state ro-vibrational levels were fit using Hamiltonian matrices accounting for various interactions. Satisfactory fits were obtained using the following polyads {151, 121, 51} and {101, 21} of interacting states. As a result, an accurate and extended set of Hamiltonian constants were obtained. The following band centers were derived: ν0 (ν15) = 808.13518(60) cm?1, ν0 (ν12) = 822.27955(37) cm?1, ν0 (ν5) = 876.72592(15), ν0 (ν3) = 1270.37032(10) cm?1, ν0 (ν10) = 1471.35580(50) cm?1 and ν0 (ν2) = 1497.83309(15) cm?1 where the uncertainties are one standard deviation.  相似文献   

11.
CO2 broadened spectra of the 1–0 band of H35Cl and H37Cl, observed near 2886 cm?1, and the 1–0 band of D35Cl and D37Cl, located near 2089 cm?1, have been recorded at room temperature and five total pressures between 150 and 700 Torr, using a Bruker IFS125HR Fourier transform spectrometer. Spectra of pure HCl were also recorded. CO2 broadening and shift coefficients of HCl and DCl have been measured using multi-spectrum non-linear least squares fitting of Voigt profiles. The analysis of the 1–0 band of DCl was complicated by the presence of overlapping CO2 bands, which were included in the treatment as absorption coefficients calculated taking line-mixing effects into account.  相似文献   

12.
The hot band 3ν9?ν9 of the isotopologue 11BF2OH (difluoroboric acid) located at 1034.78 cm?1 was investigated for the first time by Fourier transform infrared spectroscopy. During previous studies both, the ν9 mode (OH-torsion relative to the BF2 moiety, at 522.87 cm?1) and the ν4 mode (in-plane OH bend) had been shown to exert large amplitude motion, and splittings of 0.0051 and 0.0038 cm?1 had been observed in the interacting 2ν9 and ν4 bands located at 1042.87 and 961.49 cm?1, respectively. The present work establishes large amplitude effects also for the 93 excited state located at 1557.655 cm?1. Numerous P and R transitions of the 3ν9ν9 hot band were identified in the 2ν9 manifold, and doublets corresponding to a torsional splitting of 0.031 cm?1 in the 93 state were observed. The vibrational assignment of the 93 state was confirmed by the detection of the 3ν9?2ν9 hot band Q branch in the 19 μm region.  相似文献   

13.
Main requirements for the optimization of CdxHg1?xTe (MCT) structures with a view to increasing the wavelength of stimulated emission under optical pumping are discussed. A 2–2.5 μm stimulated emission from optimized MCT structures is observed experimentally at room temperature. The measured values of the gain in the active medium amount to 50 cm?1 at a 2 μm emission wavelength.  相似文献   

14.
The optical properties of doping Eu2+-ions in a novel composite host, consisting of a spatially-coherent aggregate of crystallites of KBr(0.097):KI(0.903) and KBr(0.459):KCl(0.511):KI(0.030), are investigated. The absorption spectrum consists of two broad absorption bands peaking at 353 and 279 nm while the fluorescence spectrum has a single emission band peaking at 422 nm. These spectra, formed by the spectral contributions from the phases in the composite, are similar in overall shape to the spectra of the Eu2+-doped alkali halides used as mother salts, indicating that they are similar in electronic origin. However, in relation to these alkali halides, the phases in the Eu2+-doped composite have low 10Dq-splittings (5684 and 8034 cm?1), low 5d-level barycentre shifts (corresponding to decrements of about ?3351, ?2839, and ?1823 cm?1, respectively, for one of the phases in the composite, and ?2411, ?1899 and ?916 cm?1, respectively, for the other) and low Stokes shifts (4632 and 5496 cm?1). Such low values are discussed to be due to the effect of the mixed ionic character of the impurity environment on the local crystal field as well as to an impurity preference for host cation lattice sites where an iodide ion is nearby to lie at.  相似文献   

15.
The global modeling of 14N216O line positions in the 0–9700 cm?1 region has been performed using the polyad model of effective Hamiltonian. The effective Hamiltonian parameters were fitted to the line positions collected from an exhaustive review of the literature. A number of lines perturbed by interpolyad resonance interactions were excluded from the fit. The dimensionless weighted standard deviation of the fit is 4.06. The fitted set of 138 effective Hamiltonian parameters allowed reproducing 37,353 measured line positions of 325 bands with an RMS value of 0.00423 cm?1.  相似文献   

16.
The Fourier transform infrared (FTIR) spectrum of the ν6 band of ethylene-cis-d2(cis-C2H2D2) was recorded with a unapodized resolution of 0.0063 cm?1 in the 990–1100 cm?1 region. A total of 609 transitions were assigned to this band centred at 1039.7682 ± 0.0003 cm?1. The ν6 band was found to be coupled to the ν4 band by a-type Coriolis resonance. Both perturbed and unperturbed transitions were assigned and fitted to give eight rovibrational constants with high accuracy for the v6 = 1 state with a standard deviation of 0.00097 cm?1 using a Watson’s A-reduced Hamiltonian in the Ir representation. From a rovibrational analysis of the Coriolis interaction between the ν6 band and non-infrared active ν4 band of cis-C2H2D2, the band centre of ν4 at 984.9 ± 0.2 cm?1 was derived. Furthermore, the second-order a-type Coriolis coupling constant between the two bands was obtained for the first time.  相似文献   

17.
Room-temperature, high-pressure (1–30 atm) measurements of CO2 absorption are carried out near 2.7 μm to study line mixing and finite duration collision effects on transitions in the ν1+ν3 and 2ν2+ν3 vibrational bands. Two distributed feedback diode lasers are used to measure CO2 transitions near 3631–3635 cm?1 and 3644–3646 cm?1, and an FTIR spectrometer covers the entire ν1+ν3 and 2ν2+ν3 bands from 3500 to 3800 cm?1. The experiments are carried out in CO2–air and CO2–Ar mixtures to observe the non-ideal effects under the influence of different perturbers. Measurements are compared with simulations using the Voigt line shape to analyze the deviation from the Lorentzian behavior with increasing gas density, and show significant deviation from this model at high gas densities. Line shape models using empirical corrections or dynamically based scaling laws are evaluated by comparison to the measured high-density spectra. Although none of the models is able to predict the measured spectra accurately, the line mixing model of Niro et al. [24] does an overall good job but overestimates the band centers by about 4–9%. In light of these observations, challenges of developing a CO2 sensor for high-pressure combustion applications are discussed.  相似文献   

18.
We describe the fabrication of Ge nanowires during a single co-deposition step of Ge and Mn at high temperature. In these experimental conditions, a phase separation occurs and two different phases Ge and Ge1 ? xMnx are formed with Ge1 ? xMnx in the shape of small clusters distributed randomly in the Ge matrix. Because of the high deposition temperature, a new Ge1 ? xMnx phase with low eutectic point is stabilized; this phase is different from the one (commonly Ge3Mn5) stabilized at lower temperature. During the growth process at 350 °C, the crystalline clusters remain solid but they are highly mobile and can float at the surface, serving as seeds to direct the growth of crystalline Ge nanowires from the vapor. The sketch steps of NWs formation are first the phase separation with formation of specific Ge1 ? xMnx critical nuclei with low eutectic point and second the growth of Ge NWs directed by the Ge1 ? xMnx solid cluster seeds. Ge NWs growth is forced along particular crystalline axis by the cluster seeds that lower the interfacial energy Ge/Ge1 ? xMnx and the energy formation of the germanium crystal stabilizes the cluster position at the tip of the NWs. The density of NWs can be tuned by varying the nominal Mn concentration since this density is related to the number of clusters with the specific Ge1 ? xMnx phase (with low eutectic point). The single step MBE process presented here has the main advantage to fully avoid any incorporation of unintentional impurity into Ge nanowires (apart from Mn atoms) and could be applied to several other systems. This work also provides new insights into the vapor–solid–solid growth mechanisms of Ge NWs.  相似文献   

19.
The absorption spectrum of water vapor in “natural” isotopic abundance has been recorded by high sensitivity CW-Cavity Ring Down Spectroscopy (CW-CRDS) between 6885.79 and 7405.91 cm?1. This strong absorbing region includes the first hexad of interacting vibrational bands which was previously studied by Fourier Transform Spectroscopy. The achieved sensitivity of the recordings varies from αmin~2×10–11 to 2×10?10 cm?1 allowing us to use a sample pressure of 0.1 Torr, making pressure broadening of the line profile mostly negligible. Weak lines in the vicinity of much stronger lines could then be accurately measured. The weakest lines have intensity on the order of 5×10–28 cm/molecule at 296 K. A set of 4471 lines were assigned to 4916 transitions of five water isotopologues (H2 16O, H2 18O, H2 17O, HD16O and HD18O). A small number of new energy levels was determined mostly for the H2 17O isotopologue. The previous investigations and existing databases are critically evaluated. In particular, a number of corrections and new assignments are proposed for the water list provided by the HITRAN database in the considered region. As a result, a complete list of 12,700 transitions for water in “natural” isotopic abundance is provided as Supplementary Material for the 6885–7408 cm?1 region.  相似文献   

20.
Using both high resolution (0.0018 cm?1) and medium resolution (0.112 cm?1) Fourier transform spectra of an enriched 34S (95.3%) sample of sulfur dioxide, it has been possible to accurately measure a large number of individual line intensities for some of the strongest of the SO2 bands, i.e. ν1, ν3 and ν1+ν3. These intensities were least-squares fitted using a theoretical model which takes into account the vibration–rotation interactions linking the upper energy levels where needed, and, in this way, expansions of the various transition moment operators were determined. The Hamiltonian parameters determined in previous analyses together with these moments were then used to generate synthetic spectra for the bands studied and their corresponding hot bands providing one with an extensive picture of the absorption spectrum of 34SO2 in the spectral domains, 8.7, 7.4, and 4 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号