首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
This article reviews some recent applications of high brilliance small-angle X-ray scattering (SAXS) to soft matter and closely related systems in biology. Owing to the burgeoning literature in this field, examples presented are restricted to those exploiting the high brightness of the synchrotron source. Three types of experiments are discussed; (1) dynamic processes in systems driven out of equilibrium, (2) transient processes in extremely dilute systems, and (3) microbeam technique probing the local nanostructure of hierarchically organized specimens. In addition, recent advances in sample environments specifically adapted to microbeam applications are described. Present limitations and suggestions for future developments are discussed.  相似文献   

3.
Physical systems often respond on a timescale which is longer than that of the measurement. This is particularly true in soft matter where direct experimental measurement, for example in force spectroscopy, drives the soft system out of equilibrium and provides a non-equilibrium measure. Here we demonstrate experimentally for the first time that equilibrium physical quantities (such as the mean square displacement) can be obtained from non-equilibrium measurements via umbrella sampling. Our model experimental system is a bead fluctuating in a time-varying optical trap. We also show this for simulated force spectroscopy on a complex soft molecule--a piston-rotaxane.  相似文献   

4.
The most important fraction of aerosols with respect to human health is the respirable fraction, which has particles less than 10 m in equivalent aerodynamic diameter (EAD), the so called PM 10 fraction. The collection of these respirable particles and the determination of their trace element composition is the focus of an IAEA Co-ordinated Research Programme (CRP). The IAEA Laboratory participated in this Programme and established collection sites for the air particulate samples on the grounds of the Atominstitute of the Austrian Universities in Vienna and the IAEA Laboratories, Seibersdorf, representing an urban residential site and a rural site. The collected samples as well as samples of simulated air filters (used also for blind controls) and control materials were analyzed sequentially and/or in sections by X-ray fluorescence (XRF), proton induced X-ray emission (PIXE), instrumental neutron activation analysis (INAA), and atomic absorption spectrometry (AAS). Results demonstrate the applicability of the PM-10 sampling approach, provided PIXE and/or INAA are used in the determinations. Reliable results can be obtained that will lead in comparable air pollution data for many regions in the world through CRP.  相似文献   

5.
This feature article describes the progress realized over the past half century in the field of surface-bound gradient structures created on or from soft materials (oligomers and/or polymers), or those enabling the study of the behavior of soft materials. By highlighting our work in the field and accounting for the contribution of other groups, we emphasize the exceptional versatility of gradient assemblies in facilitating fast screening of physicochemical phenomena, acting as "recording media" for monitoring a process, and playing a key role in the design and fabrication of surface-bound molecular and macromolecular motors capable of directing a transport phenomenon.  相似文献   

6.
During the last 10–15 years neutron reflectivity has emerged as a powerful and important technique for the study of surfaces and interfaces. The selectivity and sensitivity afforded by deuterium/hydrogen exchange makes the technique particularly attractive for application to the broad field of colloid and interface science. The development of the instrumentation, specialised sample environment equipment and analysis techniques has resulted its application to complex interfaces and environments and in the study of complex multi-component systems. This review provides a summary of those developments in the last two years.  相似文献   

7.
The modified BCR three-step sequential extraction procedure has been applied to two different samples of urban particulate matters (PM). The distribution of selected trace elements As, Cd, Cr, Mn, Ni, Pb, Zn was investigated and, in a comparative study, the presence of common organic air filters in extraction procedures was evaluated. Analytes in separate fractions were determined by ICP-OES and GFAAS, respectively, depending on concentration levels. While, due to air filters, a significant increase of some analytes mobility in individual fractions has been observed in case of the jet-milled PM (tunnel Letna), but in case of the PKC sample such effect was not found. The analyte impurities built in some filters has been tested, and the impact on the reliability of analyte results has been discussed. The arsenic species occurrence and their stability in presence of air filters (size 47 mm) were investigated in both urban PM samples as well, using HPLC-ICP-MS technique. Water soluble and by three-step BCR procedure extractable arsenic forms are shown in chromatograms  相似文献   

8.
The general trend in soft matter is to study systems of increasing complexity which are more technologically and biologically relevant. This is facilitated by the capability of quasielastic neutron scattering (QENS) to selectively probe spatially resolved dynamical modes at a molecular level. The large number of recent publications using QENS for investigating complex and multi-component soft matter systems, serves as recognition of the suitability of this technique by the scientific community. Exploiting its complementarity with molecular dynamics (MD) simulations and other experimental techniques is the basis of a successful methodology for this scientific challenge. We illustrate the potential of QENS with three kinds of soft materials whose structural units increase in size/complexity: lipids, polymers and biomolecules.  相似文献   

9.
10.
正Soft matter,as first proposed by de Gennes in 1991,describes a broad range of molecular systems exhibiting a large response to small foreign stimuli.Typically,it includes colloidal particles,amphiphiles,liquid crystals,polymers and others.The term"soft"originates from the common macroscopic properties of these systems and differentiates them from conventional"hard"materials.Over the past decades,the field of"soft matter"has progressed tremendously.Today,it is a truly multidisciplinary research endeavor bridging physics with chemistry and life science.  相似文献   

11.
Neutron Spin Echo is probably the youngest spectroscopic method in neutron scattering. After a brief introduction I will try to give a short account of recent progress on the instrumentation. Through some recent examples I will illustrate that NSE is a powerful tool in colloid science applied to both “old” and recent problems. With new instrumentation we will be able to tackle new problems and one of those areas in which there has been recently exciting progress is the field of surface science.  相似文献   

12.
Recent applications of the use of off-specular reflection of neutrons and X-rays in the study of soft matter are reviewed after a brief introduction to the status of the current theoretical treatment of such data. The review is intended to highlight the range of systems that may now be studied with off-specular reflection and recent progress in understanding the results that are observed. A few specific experimental cases are discussed as well as recent technical developments that may enable further more sophisticated treatments of off-specular scattering to be investigated.  相似文献   

13.
Shear-induced thickening/thinning phenomena of aqueous rodlike micellar solutions of cetyltrimethylammonium bromide (CTAB) and sodium p-toluene sulfonate (NapTS) were investigated by means of simultaneous measurements of rheology and small-angle neutron scattering (SANS), the so-called Rheo-SANS. The aqueous CTAB/NapTS solutions were classified into five different categories dependent on their flow behavior and micellar structure. By increasing salt concentration and/or shear rates, the micelles underwent morphological transition from (i) spherical or short rodlike micelles to (ii) long rodlike micelles without entanglements, followed by (iii) those with entanglements. These transitions were recognized as changes in flow behavior from Newtonian to shear-thickening and shear-thinning flow, respectively. In the latter two cases, anisotropic SANS patterns appeared around these critical shear rates. The physical meaning of the anisotropic SANS patterns accompanied by shear-thickening flow behavior is discussed in conjunction with other shear-thickening systems.  相似文献   

14.
The diffusive transport rate in a soft matter nanofluidic device is controlled with a thermoactuated hydrogel valve. The device consists of three giant unilamellar vesicles linearly conjugated by lipid nanotubes, with a solution of the stimuli-responsive polymer poly(N-isopropyl acrylamide) (PNIPAAm) in the central vesicle. The valve states "high (transport) rate" and "low (transport) rate" are obtained by heat-activated switching between PNIPAAm's dissolved and compact aggregated states. We show that three parameters influence the diffusion rate within the device: the increase of the transport rate caused by a decrease in PNIPAAm concentration upon compaction, the temperature dependence of the buffer viscosity, and the volume excluded by the PNIPAAm hydrogel compartment.  相似文献   

15.
We have developed a coarse-grained multiscale molecular simulation method for soft matter systems that directly incorporates stereochemical information. We divide the material into disjoint groups of atoms or particles that move as separate rigid bodies; we call these groups "rigid blobs," hence the name coarse-grained rigid blob model. The method is enabled by the construction of transferable interblob potentials that approximate the net intermolecular interactions, as obtained from ab initio electronic structure calculations, other all-atom empirical potentials, experimental data, or any combination of the above. We utilize a multipolar expansion to obtain the interblob potential-energy functions. The series, which contains controllable approximations that allow us to estimate the errors, approaches the original intermolecular potential as the number of terms increases. Using a novel numerical algorithm, we can calculate the interblob potentials very efficiently in terms of a few interaction moment tensors. This reduces the labor well beyond what is required in standard molecular-dynamics calculations and allows large-scale simulations for temporal scales commensurate with characteristic times of nano- and mesoscale systems. A detailed derivation of the formulas is presented, followed by illustrative applications to several systems showing that the method can effectively capture realistic microscopic details and can easily extend to large-scale simulations.  相似文献   

16.
This essay discusses some preliminary thoughts on the development of a rational and modular approach for molecular design in soft matter engineering and proposes ideas of structural and functional synthons for advanced functional materials. It echoes the Materials Genome Initiative by practicing a tentative retro-functional analysis(RFA) scheme. The importance of hierarchical structures in transferring and amplifying molecular functions into macroscopic properties is recognized and emphasized. According to the role of molecular segments in final materials, there are two types of building blocks: structural synthon and functional synthon. Guided by a specific structure for a desired function, these synthons can be modularly combined in various ways to construct molecular scaffolds. Detailed molecular structures are then deduced, designed and synthesized precisely and modularly. While the assembled structure and property may deviate from the original design, the study may allow further refinement of the molecular design toward the target function. The strategy has been used in the development of soft fullerene materials and other giant molecules. There are a few aspects that are not yet well addressed:(1) function and structure are not fully decoupled and(2) the assembled hierarchical structures are sensitive to secondary interactions and molecular geometries across different length scales. Nevertheless, the RFA approach provides a starting point and an alternative thinking pathway by provoking creativity with considerations from both chemistry and physics. This is particularly useful for engineering soft matters with supramolecular lattice formation, as in giant molecules, where the synthons are relatively independent of each other.  相似文献   

17.
The charge carrier dynamics in organic semiconductors has been traditionally discussed with the models used in inorganic crystalline and amorphous solids but this analogy has severe limitations because of the more complicated role of nuclear motions in organic materials. In this perspective, we discuss how a new approach to the modelling of charge transport is emerging from the alliance between the conventional quantum chemical methods and the methods more traditionally used in soft-matter modelling. After describing the conventional limit cases of charge transport we discuss the problems arising from the comparison of the theory with the experimental and computational results. Several recent applications of numerical methods based on the propagation of the wavefunction or kinetic Monte Carlo methods on soft semiconducting materials are reviewed.  相似文献   

18.
Investigating lateral structures of surfaces and interfaces from the mesoscale down to atomic resolution is of growing interest to modify, functionalize, and understand the behavior of materials in soft matter and biophysics. Grazing-incidence scattering techniques have proven to be very powerful for such kind of studies. Using X-rays and neutrons also buried lateral structures can be accessed in a non-destructive way. The large probed sample area provides a high statistical relevance of the determined structure information, and complex sample environments in combination with in situ and in operando experiments provide the full potential for gaining deep insights in structure formation processes. In the brief review, we reflect on the current state of the art of grazing-incidence scattering techniques using X-rays and neutrons, fields of interest, and applications in soft matter and biophysics, resulting in challenges and providing a short outlook. Owing to the already available literature on X-ray–based techniques, we will set a slight emphasis on neutron-based techniques.  相似文献   

19.
20.
Neutron scattering is a valuable tool not only in studying the structure but also the dynamics of nanoscale soft matter systems. By combining different neutron scattering methods, it is possible to observe energy changes from millielectronvolt to nanoelectronvolt. A unique advantage of neutron scattering is the possibility to highlight different parts of a system simply by changing its isotopic composition, allowing to study specific parts of complex systems. This review tries to give an overview of the possibilities of neutron scattering methods together with some recent examples, mostly from neutron spin-echo spectroscopy, which is the method allowing to measure the smallest changes in energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号