首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
IntroductionAn accurate skin temperature measurement of Neonatal Infrared Thermography (NIRT) imaging requires an appropriate calibration process for compensation of external effects (e.g. variation of environmental temperature, variable air velocity or humidity). Although modern infrared cameras can perform such calibration, an additional compensation is required for highly accurate thermography. This compensation which corrects any temperature drift should occur during the NIRT imaging process. We introduce a compensation technique which is based on modeling the physical interactions within the measurement scene and derived the detected temperature signal of the object.Materials and methodsIn this work such compensation was performed for different NIRT imaging application in neonatology (e.g. convective incubators, kangaroo mother care (KMC), and an open radiant warmer). The spatially distributed temperatures of 12 preterm infants (average gestation age 31 weeks) were measured under these different infant care arrangements (i.e. closed care system like a convective incubator, and open care system like kangaroo mother care, and open radiant warmer).ResultsAs errors in measurement of temperature were anticipated, a novel compensation method derived from infrared thermography of the neonate’s skin was developed. Moreover, the differences in temperature recording for the 12 preterm infants varied from subject to subject. This variation could be arising from individual experimental setting applied to the same region of interest over the neonate’s body. The experimental results for the model-based corrections is verified over the selected patient group.ConclusionThe proposed technique relies on applying model-based correction to the measured temperature and reducing extraneous errors during NIRT. This application specific method is based on different heat flux compartments present in neonatal thermography scene. Furthermore, these results are considered to be groundwork for further investigation, especially when using NIRT imaging arrangement with additional compensation settings together with reference temperature measurements.  相似文献   

3.
4.
The transient heat flux measurement at stagnation point is a significant solicitation at highly compressed flow field environment. In aerodynamics surface heating point of view, the estimation of stagnation heat fluxes at the tip of a blunt body is very imperative. When the blunt body is exposed to high-speed flow field environments, at the stagnation point heat transfer would be maximum. The coaxial surface junction thermocouples (CSJTs) are convenient for short duration time scale due to the fast response in the range of millisecond or less (?0.1 ms). These robust CSJTs have the tractability of intensifying them directly on any type of surface and can be used for routine measurement in ground-based impulse amenities as a temperature measuring devices where rapid heat loads are anticipated. In this work, three different types of coaxial thermocouples K-type, E-type, and J-type have been designed and contrived. The microstructural analysis of measuring surface property has been carried out to see the surface morphology using field emission scanning electron microscopy (FESME) and chemical characterization of these CSJTs materials using energy dispersive X-ray analysis (EDXA) technique is used to verify qualitatively appraise the CSJTs materials composition. The thermal coefficient of resistance (TCR) and sensitivity (S) of each coaxial thermocouple have been determined by using oil-bath calibration technique with the linear variation of resistance corresponding to the variation of temperature and found that these coaxial thermocouples are highly sensitive and suitable for highly transient heat transfer measurements. For this purpose, these three types of CSJTs have been tested under highly compressed heated air 310 K temperature for 100 ms at pressure 6.1 bar with Mach number unity (M = 1) using compressor test rig. Numerical simulation has also been carried out with these three RTDs to satisfy the experimental parameters using Ansys Fluent 15.0 and typical transient temperature recorded. Surface heat fluxes recovered from experimental and numerical transient temperatures histories using semi-infinite heat conduction modeling having good agreement with accuracy ±3% or less. This study divulges the expertise of these handmade coaxial thermocouples for transient surface heat flux measurement for short durations at highly compressed air facilities.  相似文献   

5.
A remote and non-destructive method for the characterization of residual stress in metallic components is here proposed. Such a method is based on the application of infrared thermography for the evaluation of thermal diffusivity, which is expected to be dependent on the local dislocation density in the material lattice induced by plastic deformations. Preliminary experimental results obtained on a yielded ASTM 516 grade 65 steel specimen are presented and discussed on the basis of microhardness and optical metallographic investigations carried out on the same sample.  相似文献   

6.
The classic inversion formula available from the literature for detecting corrosion in a plate is extended onto cylinder and sphere. Errors due to inappropriate algorithms are evaluated, theoretically. The experimental results obtained on a real boiler section are discussed. The multidimensional heat flux due to the shape, finite size of defects and heating are taken into account in detecting material loss of massive metallic components.  相似文献   

7.
超声红外热像技术及其在无损评价中的应用   总被引:9,自引:0,他引:9       下载免费PDF全文
本介绍在光热红外检测的基础上发展的超声红外热像技术。该技术利用超声脉冲作为激发源,当超声脉冲在试样上传播的过程中遇到裂纹等缺陷时,缺陷引起超声附加衰减而局部升温。利用红外照相机获取试样表面的温度分布,可显示裂纹等缺陷。超声红外热像技术发挥了超声和红外技术的优点,可实时地检测裂纹等缺陷,在无损评价和检测中有广泛应用。  相似文献   

8.
Abnormal body temperature is a natural indicator of illness. Infrared thermography (IRT) is a fast, passive, non-contact and non-invasive alternative to conventional clinical thermometers for monitoring body temperature. Besides, IRT can also map body surface temperature remotely. Last five decades witnessed a steady increase in the utility of thermal imaging cameras to obtain correlations between the thermal physiology and skin temperature. IRT has been successfully used in diagnosis of breast cancer, diabetes neuropathy and peripheral vascular disorders. It has also been used to detect problems associated with gynecology, kidney transplantation, dermatology, heart, neonatal physiology, fever screening and brain imaging. With the advent of modern infrared cameras, data acquisition and processing techniques, it is now possible to have real time high resolution thermographic images, which is likely to surge further research in this field. The present efforts are focused on automatic analysis of temperature distribution of regions of interest and their statistical analysis for detection of abnormalities. This critical review focuses on advances in the area of medical IRT. The basics of IRT, essential theoretical background, the procedures adopted for various measurements and applications of IRT in various medical fields are discussed in this review. Besides background information is provided for beginners for better understanding of the subject.  相似文献   

9.
The existing inverse methods used to determine the heat flux density require that the forward problem and the problem domain (geometry) be known. In this paper, in order to determine the spatiotemporal heat flux density without knowing the real problem domain, we propose an approach based on temporal tracking of the thermal front. The proposed approach is particularly relevant when a three-dimensional formulation is adopted for nondestructive testing using infrared thermography. For such a formulation, heat flux density resulting from the external thermal stimulus is needed and must be determined to accurately characterize the defects and reconstruct the internal geometry of the inspected objects. The proposed approach uses only two inputs: the time-dependent temperature of the frontal surface recorded by an infrared camera and the 3D point cloud of the frontal surface collected by a 3D scanner. The method is evaluated numerically on an object of complex shape. We consider the case of pulsed thermal stimulus as well as the cases of unit step and modulated thermal stimuli. An experimental validation is performed on a cylindrical object submitted to a pulsed thermal stimulus and a modulated thermal stimulus. The results show the accuracy of the method which can easily be implemented as the initial step of the three-dimensional quantitative nondestructive testing of objects using infrared thermography.  相似文献   

10.
Infrared thermography (IRT) has matured and is now widely accepted as a condition monitoring tool where temperature is measured in a non-contact way. Since the late 1970s, it has been extensively used in vibrothermography (Sonic IR) non-destructive technique for the evaluation of surface cracks through the observation of thermal imaging of the vibration-induced crack heat generation. However, it has not received research attention on prediction of structural vibration behaviour, hence; the concept to date is not understood. Therefore, this paper explores its ability to fill the existing knowledge gap. To achieve this, two cantilever beam-like structures couple with a friction rod subjected to a forced excitations while infrared cameras capturing the thermal images on the friction interfaces. The analysed frictional temperature evolution using the Matlab Fast Fourier Transform (FFT) algorithm and the use of the heat conduction equation in conjunction with a finite difference approach successfully identifies the structural vibration characteristics; with maximum error of 0.28% and 20.71% for frequencies and displacements, respectively. These findings are particularly useful in overcoming many limitations inherent in some of the current vibration measuring techniques applied in structural integrity management such as strain gauge failures due to fatigue.  相似文献   

11.
The article presents the results of research developing methods for determining the coefficient of thermal diffusivity of thermal insulating material. This method applies a periodic heating as an excitation and an infrared camera is used to measure the temperature distribution on the surface of tested material. In simulation study, the usefulness of known analytical solution of the inverse problem was examined using a three-dimensional model of the phenomenon of heat diffusion in the sample of tested material. To solve the coefficient inverse problem, an approach using artificial neural network is proposed. The measurements were performed on an experimental setup equipped with a ThermaCAM PM 595 infrared camera and frame grabber. The experiment allowed to verify the chosen 3D model of heat diffusion phenomenon and to determine suitability of the proposed test method.  相似文献   

12.
During the past several years infrared thermography has evolved into a powerful investigative means of thermo-fluid-dynamic analysis to measure convective heat fluxes as well as to investigate the surface flow field behaviour over complicated body shapes. The basic concepts that govern this innovative measurement technique together with some particular aspects linked to its use are herein reviewed. Different operating methods together with their implementations are also discussed. Finally, the capability of infrared thermography to deal with several simple, or complex, fluid flow configurations is analysed.  相似文献   

13.
Several methods have been reported in the literature using pulsed thermography for quantitative measurement of defect depth or sample thickness. In this paper, based on the analysis of a theoretical one-dimensional solution of pulsed thermography, we proposed to use the absolute peak slope time (APST) for quantitative measurement of defect depth. APST is the peak slope time of the curve which is obtained by multiplying the original temperature decay with the square root of the corresponding time. The theoretical model shows that APST has linear relation with square of defect depth, which was verified with the experimental results of an aluminum and a steel specimen with six flat-bottom wedges and holes as simulated defects respectively.  相似文献   

14.
We present a general class of inhomogeneous cosmological models filled with non-thermalized perfect fluid by assuming that the background spacetime admits two space-like commuting Killing vectors and has separable metric coefficients. The singularity structure of these models depends on the choice of the parameters and the metric functions. A number of previously known perfect fluid models follow as particular cases of this general class. Physical and geometrical features of these models are studied and the general expression for temperature distribution is given.  相似文献   

15.
16.
Infrared thermography can be used as a tool for evaluating antitranspirant treatment through the measurement of evaporative fluxes. The aim of this work is to compare the leaf surface temperatures of plant treated with chitosan (CHT), a potential stomatal-closing antitranspirant, with temperatures of leaves treated with the commercially available antitranspirant Vapor Gard®, a film-forming polyterpene. The main problem in the correct evaluation of stomatal conductance at leaf level is due to the need of performing a measurement in a completely non-invasive method. The main advantage of thermographic method is the possibility to acquire information about instantaneous conditions of transpiration over a large number of plants, with no need of sampling and avoiding any contact with plants.Tests on bean plants (Phaseolus vulgaris) showed the applicability of the thermal imaging to discriminate plants with different evaporation rate due to treatment with different antitranspirant compounds. Quantitative evaluation of evaporative flux and stomatal conductance was obtained through reference measurements on standards with calibrated conductance. Non-destructive gravimetric measurements were used in order to get a reliable evaluation of evaporative fluxes. In conclusion, thermographic approach, in climatic chamber, seems to be a valid tool for rapidly screening the performance of different antitranspirant products.  相似文献   

17.
A methodical approach for qualitative and quantitative non-destructive testing of near-surface structures in civil engineering (CE) with active thermography is presented. It adopts the non-destructive testing (NDT) method of pulsed phase thermography (PPT) for the special requirements of CE and cultural heritage. The concept might be understood as a square pulse thermography (SPT) in frequency domain or an amplitude-expanded PPT with square pulse heating.After a discussion of the material spanning concept and qualitative results in cultural heritage a new approach for quantitative non-destructive testing (NDT) of near-surface structures in CE with active thermography is introduced and tested by investigations on concrete specimen with artificial defects. It is based on the thermal diffusivity of the material and the characteristic frequency of the first extrema of phase and amplitude contrast and aims at complementing the established approaches for defect depth calculation for measurements with long heating and observation times. It should be easily extendable to other fields of application.  相似文献   

18.
The diffraction-limited spot size of synchrotron-based IR microscopes provides cell-specific, spectrochemical imaging of cleared leaf, stem and root tissues of the model genetic organism Arabidopsis thaliana, and mutant plants created either by T-DNA insertional inactivation or chemical mutagenesis. Spectra in the wavelength region from 6 to 12 μm provide chemical and physical information on the cell wall polysaccharides of mutants lacking particular biosynthetic enzymes (“Cellulose synthase-like” genes). In parallel experiments, synchrotron IR microscopy delineates the role of Arabidopsis cell wall enzymes as susceptibility factors to the fungus Erysiphe cichoracearum, a causative agent of powdery mildew disease. Three genes, pmr4, pmr5, and pmr6 have been characterized by these methods, and biochemical relations between two of the genes suggested by IR spectroscopy and multivariate statistical techniques could not have been inferred through classical molecular biology. In ecological experiments, live plants can also be imaged in small microcosms with mid-IR transmitting ZnSe windows. Small exudate molecules may be spatially mapped in relation to root architecture at diffraction-limited resolution, and the effect of microbial symbioses on the quantity and quality of exudates inferred. Synchrotron IR microscopy provides a useful adjunct to molecular biological methods and underground observatories in the ongoing assessment of the role of root–soil–microbe communication.  相似文献   

19.
Coatings have been widely used in modern industry and it plays an important role. Coatings thickness is directly related to the performance of the functional coatings, therefore, rapid and accurate coatings thickness inspection has great significance. Existing coatings thickness measurement method is difficult to achieve fast and accurate on-site non-destructive coatings inspection due to cost, accuracy, destruction during inspection and other reasons. This paper starts from the introduction of the principle of lock-in thermography, and then performs an in-depth study on the application of lock-in thermography in coatings inspection through numerical modeling and analysis. The numerical analysis helps explore the relationship between coatings thickness and phase, and the relationship lays the foundation for accurate calculation of coatings thickness. The author sets up a lock-in thermography inspection system and uses thermal barrier coatings specimens to conduct an experiment. The specimen coatings thickness is measured and calibrated to verify the quantitative inspection. Experiment results show that the lock-in thermography method can perform fast coatings inspection and the inspection accuracy is about 95%. Therefore, the method can meet the field testing requirements for engineering projects.  相似文献   

20.
This paper deals with the evolution of infrared thermography into a powerful optical method to measure wall convective heat fluxes as well as to investigate the surface flow field behaviour over complex geometries. The most common heat-flux sensors, which are normally used for the measurements of convective heat transfer coefficients, are critically reviewed. Since the infrared scanning radiometer leads to the detection of numerous surface temperatures, its use allows taking into account the effects due to tangential conduction along the sensor; different operating methods together with their implementations are discussed. Finally, the capability of infrared thermography to deal with three complex fluid flow configurations is analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号