首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dielectric and electro-optical studies of a pure and electron beam irradiated liquid crystalline compound 4-(trans-4′-n-hexylcyclohexyl) isothiocyanatobenzoate have been carried out. Dielectric anisotropy, relaxation frequency, activation energy and distribution parameter of an observed non-collective mode corresponding to the molecular rotation about the short axes have been determined as a function of temperature and irradiation dose whereas threshold and switching voltages, splay elastic constant are determined as a function of irradiation dose. The relaxation frequencies initially decrease up to an irradiation dose of 40 kGy but thereafter increase due to irradiation. The activation energies are increased up to irradiation dose of 40 kGy but around 60 kGy dose of irradiation, we found decrease in the activation energy. Electro-optical measurements show the lowering of the threshold voltage with sufficient improvement in the steepness of the transmission voltage curves due to irradiation. The observed changes in the dielectric and electro-optical properties are related with the cis–trans isomerization due to electron beam irradiation.  相似文献   

2.
The effects of electron beam irradiation doses on the poly-tetra-fluoroethylene (PTFE) have been studied. Several techniques, such as X-ray diffraction (XRD), differential scanning calorimetry (DSC), mechanical properties and Fourier transform infrared spectroscopy (FTIR) were applied to characterize the PTFE samples and to study the radiation effects on the crystal structure of the polymer.The irradiation dose up to 150 kGy showed an increase in the crystallinity degree of PTFE, which has been observed and confirmed during the DSC and XRD measurements. The increase in crystallinity was attributed to the scissions of the chain in the amorphous region. Moreover, the number-average molecular weights were estimated from the heat of crystallization measured by DSC technique. The results indicated that the molecular weights were decreased by increasing the heat of crystallization due to irradiation with doses up to 150 kGy. Radiation resistance of the irradiated and non-irradiated PTFE was investigated during its mechanical properties at room temperature. The dose at half value of the elongation at break is about 3.10 kGy while the dose at half value of the tensile strength is about 1.70 kGy.  相似文献   

3.
ABSTRACT

Samples from sheets of the polymeric material Makrofol LS 1–1 have been exposed to gamma radiation in the dose range 10–250?kGy. The modifications induced in Makrofol samples due to gamma irradiation have been studied through different characterization techniques such as intrinsic viscosity as a measure of the average molecular mass, Fourier Transform Infrared spectroscopy FTIR, refractive index and color difference studies. The results indicate that the crosslinking dominates at the dose range 50–250?kGy. The crosslinking reported by viscosity measurements is supported by the trend of the function groups present in the sample with the gamma dose. Also, the increase in intrinsic viscosity indicating an increase in the average molecular mass was associated with an increase in the refractive index. Additionally, the non-irradiated Makrofol samples showed significant color sensitivity towards gamma irradiation. The color intensity ΔE, which is the color difference between the non-irradiated sample and those irradiated with different gamma doses, increased (0–5.56) with increasing the dose up to 250?kGy, convoyed by an increase in the red and yellow color components.  相似文献   

4.
Electron spin resonance (ESR) spectroscopy has been applied to the identification of the irradiation of a wide variety of foods. In this study, ESR was applied to identify irradiated rice noodles. A detailed ESR investigation of irradiated noodles was carried out in the dose range 0.5–3 kGy. The stability of the radiation-induced ESR signal at cold (?4 °C) and room (25 °C) temperatures was studied over a storage period of 24 weeks. Irradiated rice noodle samples exhibited a strong, symmetric doublet ESR signal centered at g = 2.0, whereas unirradiated noodle exhibited a very weak signal. The ESR signal intensity increased linearly with radiation dose ranging from 0.5 to 3 kGy. Keeping the samples at ?4 °C and 25 °C for 24 weeks caused decreases of 50% and 90% in the ESR signal intensities, respectively. However, long-term decay data at room temperature showed that the ESR technique could be used to identify irradiated rice noodles up to 24 weeks following irradiation.  相似文献   

5.
A commercial composite anticorrosive pigment based on aluminum dihydrogen tripolyphosphate was studied after exposure to gamma irradiation (Co60, 0, 20, 50, 100 and 150?kGy) using FTIR, XRD, TGA and acid-base titration technologies. Although the FTIR spectra showed that the effect of the irradiation on functional groups in the pigments was not obvious, the decrease in the crystal lattice parameters of the irradiated pigments was observed in the XRD spectra compared to the non-irradiated sample. But the extent of the lattice parameter decrease monotonically with the increase of absorbed dose from 20 to 150?kGy, which was attributed to the decomposition of water and the simultaneous occurrence of lattice damage when the pigments were exposed to gamma rays. Of particular significance was the displayed basicity of the aqueous solutions of the irradiated pigments compared to the acidity of the solution of the non-irradiated pigment, which was attributed to the decomposition of P-OH groups (combined water).  相似文献   

6.
The effect of electron beam irradiation on the structural and optical properties of Makrofol solid state nuclear track detector (SSNTD) was investigated. Samples from Makrofol detector were irradiated with electron beam with doses at levels between 10 and 400 kGy. Structural and optical property studies using X-ray diffraction, FTIR spectroscopy, color difference measurements and electron paramagnetic resonance were performed on non-irradiated and irradiated Makrofol samples. The transmission of these samples in the wavelength range 200–2500 nm, as well as any color changes, was studied. A characteristic absorption bands with different intensities was observed. Using the transmission data, both the tristimulus and the Commission Internationale de l’Eclairage (CIE) LAB coordinate values were calculated. In addition, the color differences between the non-irradiated sample and those irradiated with different doses were calculated. The results indicate that the Makrofol detector is a material that does not have a high resistance to degradation, and its tendency to crosslinking is much lower than that of several other SSNTDs.  相似文献   

7.
The optical absorption (OA) spectrum of LiF:Mg,Ti has been studied as a function of dose at two different cooling rates following the 400 °C pre-irradiation anneal in order to further investigate the role of cooling rate in the thermoluminescence (TL) mechanisms of this material. “Slow-cooling” following the pre-irradiation 400 °C anneal substantially decreases the OA bands at 3.25 eV and 4.0 eV, in agreement with the overall loss in TL peaks 2–5 intensity using slow-cooling routines. Slow-cooling appears to shift the maximum intensity of peak 5 to lower temperatures (a behaviour which has been attributed to an enhanced intensity of peak 5a), however, no difference in the shape of the 4.0 eV OA band is detected following “slow-cooling”. Apparently the OA band related to peak 5a is too close in energy to the peak 5 OA band to be observed due to lack of sufficient resolution and spectral deconvolution process or it is not present at room temperature (RT) and formed during heating of the sample. The intensity of the 4.0 eV OA band does not change if the sample (prior to irradiation to a standard dose of 200 Gy) is irradiated to 4 kGy followed by a 500 °C/1 h post-irradiation anneal. This result demonstrates that the loss of intensity at high levels of dose (so-called radiation damage) of TL glow peak 5 results from alteration of the LCs or to the creation of additional competitive centers and is not correlated with the dose behaviour of the TCs.  相似文献   

8.
In this article, effect of gamma irradiation on the structural and optical properties of 2-aminopyridinium 4-nitrophenolate 4-nitrophenol (2AP4N) has been reported. The grown crystals of 2AP4N were exposed to 60Co gamma rays with a dose of 50 kGy and 100 kGy. The radiation-induced effects were analyzed using X-ray diffraction, FT-IR, UV–visible, photoluminescence techniques. The refractive index was determined using a long arm spectrometer. The structural properties of the pristine and irradiated crystals were studied using powder XRD. The peak intensity decrease after irradiation may be attributed to the formation of point defects. The UV visible study reveals that the energy gap has decreased after irradiation and then has increased for the higher dose. The intensity variation in the PL spectra is due to colour center mechanism. The SHG efficiency of 2AP4N crystals was found to be unaffected by gamma irradiation.  相似文献   

9.
High-temperature emission spectra of LiF:Mg,Cu,P (MCP-N) TL detectors, irradiated above the nominal saturation level, up to the hundreds of kGy, have been measured. Emission spectra integrated over the whole temperature range, as well as the spectra recorded at the temperatures corresponding to the TL peaks maxima, were analyzed. With increasing dose of γ-radiation no significant changes were observed in the short wavelength emission range (220–450 nm) of the measured spectra. For doses of 4 kGy and higher the long wavelength emission (450–800 nm) started to be visible. All recorded spectra have been expressed in a form of the sum of several Gaussian-shape bands in the energy domain, which parameters remain in a general agreement with the measurements of Mandowska et al. (2010). Spectra of the low-temperature, main, high-temperature and “B” TL peaks were investigated. In the ranges of the low-temperature and the main dosimetric peaks, that is 100–125 and 210–230 °C, respectively, the short wavelength emission disappeared with increasing dose and for the highest doses the long wavelength emission became dominant. Both the high-temperature (290–320 °C) and the “B” (370–425 °C) peaks emission spectra exhibited somewhat different behavior with increasing dose. Initially, an even growth of the whole spectrum was observed and for doses higher than 16 kGy the intensity of the spectrum decreased, but the short wavelength emission band fell significantly faster, in case of the high-temperature TL peaks. In case of the “B” peak emission spectra the long wavelength emission did not play any role in the analyzed dose range. The spectra measured at the TL peaks maxima were also fitted with several Gaussian-shape bands. Dose-intensity dependences for all Gaussian-shape bands fitted to the measured spectra are also included in this paper.  相似文献   

10.
PVDF/nanoclay nanocomposites were prepared via melt mixing method. The intercalated dispersion of the nanoclay in PVDF matrix was confirmed by XRD. According to FTIR, DSC and XRD results, the presence of nanoclay facilitated transition from α-to-β crystalline phase. Electron beam irradiation decreased the melting point of the nanocomposites. The decrease in melting point of the nanocomposites was about 11 °C at 500 kGy. The crystallinity of nanocomposites increased at an irradiation dose of 100 kGy and decreased at higher irradiation doses. The extent of crosslinking of the nanocomposites increased significantly with irradiation up to 300 kGy. The nanoclay intensified the increase in yield strength with irradiation doses up to 300 kGy. The combination of nanoclay and irradiation had a synergistic effect on the increase of yield strength.  相似文献   

11.
Aerial l-alanine pellet dosimeter is characterized by MiniScope MS300 electron spin resonance spectrometer measurements using Aer'EDE Version 2.0.4. software for dose calculation. The measurement traceability is achieved by Aerial dosimetry laboratory where dosimeters for calibration curve were irradiated by electron beam accelerator. Dose determinations in Aerial are traceable to National Physical Laboratory (NPL). The software used for construction of calibration curve gives also the standard deviation of the residuals of measurements for calibration that is used for dose uncertainty calculation. In aim to determine whether this value can actually be taken as absorbed dose uncertainty during usage of this dosimetry system, alanine dosimeters were irradiated with doses between 5 and 32 kGy by 60Co laboratory source for internal calibration. The dose rate at the places for irradiation was (20 ± 0.5) mGy s−1 determined by Fricke dosimeter. Measurement of each irradiated dosimeter was repeated ten times in ten days. The results of measurements were analyzed to identify the sources of uncertainty, as well as their quantification in evaluation of total measurement uncertainty. In addition to statistical effects, the very low dose rate that was used for the irradiation of alanine dosimeters affects the measurements of absorbed dose, particularly for higher absorbed doses where the measured dose can be up to 3% lower than the real.  相似文献   

12.
A colorless polyvinyl butyral film (PVB) based on radiation-sensitive dye of leucomalachite green (LMG) was investigated as a high-dose dosimeter for gamma radiation processing applications in the dose range of 3–150 kGy. The useful applications for such dose range are food irradiation treatment, medical devices sterilization and polymer modification. Gamma irradiation of the film induces a significant intensity of green color, which can be characterized by a main absorption band at 627 nm and a small band at 425 nm. The variation in response of irradiated film stored in the dark and under laboratory light illumination was less than 3% during the first 6 days of storage. The response of film during irradiation was slightly influenced by relative humidity in the range of 12–76%; however, it was significantly affected by temperature in the range of 5–40 °C. The radiation chemical yield was reported to be 6.76 × 10−6 mol/J at the absorbed dose of 30 kGy for the film containing 6.5% of LMG dye. The overall uncertainty associated with routine dose monitoring would be less than 6% at a 95% confidence level if the dosimeter was being corrected for irradiation conditions and being calibrated with reference standard dosimeter in the production facility.  相似文献   

13.
Samples from Cellulose triacetate (CTA) sheets were irradiated with electron beam in the dose range 10–200 kGy. Non-isothermal studies were carried out using thermogravimetric analysis (TGA) to obtain the activation energy of thermal decomposition for CTA polymer. The CTA samples decompose in one main break down stage. The results indicate that the irradiation by electron beam in the dose range 80–200 kGy increases the thermal stability of the polymer samples. Also, the variation of melting temperatures with the electron dose has been determined using differential thermal analysis (DTA). The CTA polymer is characterized by the appearance of one endothermic peak due to melting. It is found that the irradiation in the dose range 10–80 kGy causes defects generation that splits the crystals depressing the melting temperature, while at higher doses (80–200 kGy), the thickness of crystalline structure (lamellae) is increased, thus the melting temperature increases. In addition, the transmission of these samples in the wavelength range 200–2500 nm, as well as any color changes, were studied. The color intensity ΔE* was greatly increased on increasing the electron beam dose, and accompanied by a significant increase in the blue color component.   相似文献   

14.
本文采用傅立叶变换红外光谱(吸收光谱、二阶导数谱及差谱)法对经不同剂量核辐照的人参粉进行了对比研究.辐照剂量不高于9 kGy时,人参粉样品的化学成分几乎没有发生变化;人参粉样品经15kGy及以上的辐照剂量辐照后,可能产生新的化学成分,表明采用辐照剂量不高于9 kGy的核辐照杀灭人参粉污染的微生物和各种寄生虫卵是可行的;...  相似文献   

15.
The effects of sub-ambient temperatures of irradiation and dose response of CaSO4:Dy phosphor was investigated. The irradiation dose in the range 0.5–7.0 kGy was chosen to meet the requirement of commercial food irradiation at low temperature. Commercially available phosphor showed no significant change in glow curve structure with low temperature of irradiation. In order to enhance the sensitivity of the low temperature glow peak (142 °C), the phosphor was subjected to different post-preparation thermal treatments at 700–900 °C. The change in glows and improvement in dose response characteristics were explained by Electron Paramagnetic Resonance (EPR) spectroscopy. At sub-ambient temperature of irradiation, the behavior of thermally treated CaSO4:Dy phosphor with increasing dose revealed improved linear response of the low temperature glow peak and could be an efficient dosimetry system for the food commodities irradiated at low temperatures.  相似文献   

16.
采用电子束(EB)对聚丙烯腈/聚氧化乙烯(PAN/PEO)凝胶电解质进行了剂量为13~260 kGy的辐照, 并对辐照改性的电解质组装的染料敏化太阳电池(DSSC)进行了性能测量。 结果表明, 改性后的DSSC的光电转化效率比改性前的高; 并且随EB辐照剂量的增加, DSSC效率先迅速增加(0~65 kGy), 然后缓慢减小(65~130 kGy)直至趋于一个平衡值(130~260 kGy)。 提升DSSC效率的最佳辐照剂量为65 kGy, 此时效率提高了约36%。 对比DSSC短路电流、 开路电压和填充因子随辐照剂量的变化, 发现DSSC效率的提高主要是由短路电流的提高引起的。 测量表明, 辐照改性后的DSSC时间稳定性得到了改善, 并且辐照剂量越高, 稳定性的改善越明显。 In this work, PAN/PEO (polyacrylonitrile/polyethylene oxide) based gel electrolyte was irradiated by electron beam (EB) with dose from 13 to 260 kGy. Then, DSSC (dye sensitized solar cell) was fabricated by the irradiated electrolyte and characterized. The results show that the efficiency of the DSSC fabricated by irradiated electrolyte is promoted comparing with DSSC fabricated by un irradiated electrolyte. And with irradiation dose increasing, the DSSC efficiency increases rapidly at first (0~65 kGy), then, drops down slowly (65~130 kGy), finally trends to a stable value (130~260 kGy). It indicates that there is an optimal irradiation dose, at which the promotion of DSSC efficiency is the highest, approximate 36%. Observed from the change of short circuit current, open circuit voltage and fill factor, short circuit current promotion by EB irradiation is found to be the main reason of DSSC performance promotion. The time stability measurement of the DSSC indicates that EB irradiation on PAN/PEO electrolyte reduces the loss of efficiency and the limiting effects become more apparent as the irradiation dose increases.  相似文献   

17.
18.
The chain segment motion, charge trapping and detrapping in γ‐irradiated nylon 1010 films (doses in the range 0–2,000 kGy were used) have been investigated by means of thermally stimulated depolarization current (TSDC). There are three current peaks (named α, ρ1 and ρ2, respectively) in the TSDC spectra, corrected by spontaneous current, above room temperature. By analyzing the characteristic parameters of the three peaks, it is found that the chain segment motion in the amorphous regions becomes more difficult at low irradiation dose (<100 kGy) and then becomes easier with further increasing irradiation dose. The stability of the traps at the crystalline‐amorphous interfaces increases at low irradiation dose (<500 kGy) and then decreases with further increasing irradiation dose; the irradiation promotes the creation of traps and the stability of traps in the crystalline regions.  相似文献   

19.
20.
鉴于丙氨酸辐照后形成的自由基很稳定,其总数在食品辐照常用的剂量范围(102~104Gy)内正比于辐照剂量,我们选定丙氨酸-ESR系统作为我国γ射线大剂量传递剂量计,并对它进行了研究,确定了正常的ESR测量条件。特别修正了波谱仪的增益系数之间的线性关系并计测了旋转样品管对信号幅度的影响。检测吸收剂量的下限为5Gy。在0.05~1k7Gy的范围内,对于以十种不同剂量辐照的丙氨酸样品,ESR波谱主峰幅度h与相应的剂量D之间的线性相关系数大于0.999。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号