首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Using a museum specimen of perthitic feldspar, the characteristics of post-IR IRSL production at 200 °C after different prior IR bleaching at 100 °C were investigated. It was found that the post-IR IRSL signal had an isothermal TL contribution that was unexpected following a previous preheat at 320 °C; this is the result of isothermal decay of recuperated TL peaks resulting from photo-transfer that occurred when the previous IRSL signal was measured at a lower temperature. The isothermal TL contribution to the post-IR IRSL signal depends on prior IR bleaching conditions. Since the recuperated TL signal comes from photo-transfer during IRSL production, this signal should also suffer from anomalous fading. Thus, it is suggested that this isothermal TL contribution to the measured post-IR IRSL is removed by the inclusion of an additional step, a cut-heat to 300 °C, in the post-IR IRSL dating protocol.  相似文献   

2.
Yellow stimulated luminescence (Y-OSL) is the light detected from potassium-rich feldspars at 410 nm under stimulation by a yellow light source emitting 590 nm. The investigation of this study aimed at understanding basic luminescence physics of Y-OSL in order to assess the suitability of the technique for dating. The Y-OSL signal properties tested were signal intensity, thermal assistance, thermal stability, sensitivity to daylight and the suitability of a single aliquot regenerative (SAR) protocol to be employed for equivalent dose (De) estimation. De measurements were conducted on samples of Holocene, last glacial and Tertiary age. The tests were undertaken on sedimentary feldspar separates extracted from aeolian, fluvial and coastal deposits.Results from experiments show that the signal intensity increases by measuring Y-OSL at elevated temperature suggesting thermal assistance characteristics similar to infrared stimulated luminescence (IRSL). The yellow stimulated signal remains unaffected by preheat temperatures up to ~200 °C suggesting higher thermal stability than the IRSL signal. The Y-OSL signal is less light sensitive than the IRSL signal and De residuals obtained from modern samples are up to 7 Gy indicating suitability of the technique for ‘older’ and well-bleached sediments. The dose recovery tests successfully recovered the given dose if the specific light sensitivity of Y-OSL is taken into account. For every sample Y-OSL De values obtained by a single aliquot regenerative dose protocol (SAR) are higher than those obtained by an IRSL SAR approach. From these results we infer high thermal stability and a minimal anomalous fading of the Y-OSL signal. We conclude that Y-OSL has a high potential to date Quaternary sediments that were sufficiently bleached in nature.  相似文献   

3.
The elevated temperature infrared stimulated luminescence (IRSL) and post-IR IRSL signals of potassium (K)-feldspars have recently garnered attention for their minimal rates of anomalous fading. The post-IR IRSL signal has been used to obtain age estimates for geological deposits, mostly in Europe. Studies on the behaviour of the IRSL and post-IR IRSL signals of K-feldspars from a wider range of geographic regions and depositional contexts are needed, particularly for regions where the OSL signal from quartz is poorly behaved. Discrepancies in the literature regarding the behaviours of the IRSL and TL signals of K-feldspars also highlight the need to characterise the behaviours of samples from a wide variety of contexts. This paper begins to address this problem by characterising and comparing the IRSL signals of a metamorphic and a volcanic K-feldspar sample from two sites in East Africa, a region in which the OSL signal from quartz has generally proven problematic for dating. We demonstrate that the metamorphic and volcanic K-feldspars have substantially different TL glow curves that respond differently to IR stimulation. The sample of metamorphic K-feldspar from Tanzania (MR9) has a peak at 430 °C that is associated with the IRSL signal and an optically less-sensitive peak at 350 °C, while the sample of volcanic K-feldspar from Ethiopia (MB3) exhibits a single broad TL region centred at ~230 °C that responds differently to IR stimulation. Differences in the change of IRSL decay curve shape with stimulation temperature suggest that the processes of IRSL production many vary between the two samples. Using dose recovery tests, we demonstrate that the IRSL (50 °C), IRSL (225 °C) and post-IR IRSL (50 °C, 225 °C) signals of sample MR9 are suitable for dose and age estimation using the single-aliquot regenerative-dose procedure, while those of sample MB3 are less suitable. The post-IR IRSL signal of the latter sample performs poorly in tests of SAR suitability and the three signals exhibit extremely high fading rates over laboratory timescales (g2days > 19%/decade).  相似文献   

4.
One of the challenges in dating rock surfaces is the choice of the luminescence mineral. Although quartz is the preferred dosimeter in sediment dating, it is often not sufficiently sensitive when extracted from solid rocks. The intensity of signals from feldspars tends to be much less dependent on geological origin and erosion history, but the dosimetry of K-rich feldspar grains extracted from rocks is complicated because the internal dose rate is very dependent on the original feldspar grain size. The in situ grain size information is lost during the crushing process used to separate the grains for measurement. This latter problem does not apply to Na-rich feldspar because of the absence of internal radioactivity.The potential application of Na-rich feldspar as a luminescence dosimeter for the IRSL dating of rock surfaces is investigated using a variety of sediment samples from different geological settings for which independent age control is available. The blue and yellow luminescence emissions are measured for IR stimulation at 50 °C (IR50), and post-IR IR stimulation at 290 °C (pIRIR290). Thermal stability experiments imply that the corresponding signals in both emissions have comparable thermal stabilities and that all signals have similar recombination kinetics and are thermally stable over geological timescales. The IR50 doses measured using blue and yellow emissions are similar to or lower than quartz doses while pIRIR290 blue doses are higher than those from yellow emission and quartz doses. The fading rates measured for the IR50 signals are ∼3%/decade larger than those measured for the pIRIR290 signals in both yellow and blue emissions. Furthermore the average fading rates of both yellow signals are ∼3%/decade higher than the corresponding fading rates of the blue signals. However, there is no detectable correlation between fading rates and the measured De values. The residual doses measured from the laboratory-bleached samples and a modern analogue suggest that the IR50 signals in both blue and yellow emissions bleach to the same degree, as do the corresponding pIRIR290 signals, and that there is no significant naturally-unbleachable residual dose observed using these signals. Neither anomalous fading nor incomplete bleaching explains the observed dose discrepancy between the two emissions. Eight uncorrected and fading-corrected ages are calculated for each sample based on all four signals, using the dose rate relevant to Na-rich feldspar extracts (i.e. ∼3% K). The IR50 and pIRIR290 blue ages were also calculated assuming a dose rate based on 12.5% internal K (i.e. assuming that the blue signals were mainly derived from contamination by K-rich feldspar). The latter pIRIR290 blue ages are in agreement with the expected age control, raising the possibility that this signal originates mainly from K-rich feldspar contamination in our Na-rich fractions, and thus is not so useful in the luminescence dating of rock surfaces. On the other hand, the pIRIR290 fading-corrected ages based on the yellow emission are consistent with the independent age controls; higher preheat and stimulation temperatures may result in more stable yellow signals from Na-rich feldspar extracts from rocks, and so reduce the size of the fading correction. We conclude that, because this signal avoids the dosimetry difficulties of K-rich feldspar extracts, it has considerable potential in the IRSL dating of rock surfaces.  相似文献   

5.
In luminescence measurements of potassium-feldspar (K-feldspar), both infrared (IR) and blue light (BL) can be used as stimulation sources. Component analysis suggests that the blue light stimulated luminescence (BLSL) measured at 60 °C from K-feldspar can be fitted using three components, namely fast, medium and slow. In order to explore the relationship between the origin of the infrared stimulated luminescence (IRSL) signal and the different components of the BLSL, five sets of experiments were conducted, namely post-IR BLSL (pIR-BLSL), post-BL IRSL (pBL-IRSL), pulse annealing tests, dose response and laboratory fading rate tests. It is observed that most of the IRSL signal can be bleached by BL, while the BLSL signal can only be partially bleached by the IR. The sources for IRSL are mainly associated with the fast and medium components of the BLSL signal.  相似文献   

6.
The IRSL and post-IR IRSL (pIRIR) signal characteristics of polymineral fine grains are investigated and compared with those of K- and Na-rich feldspar extracts. TL signal loss after IR and pIRIR stimulations occurs mainly at around 320 °C for polymineral and Na-feldspar samples and around 410 °C for K-feldspar samples, when a preheat temperature of 250 °C for 60 s is used. After preheating to a higher temperature (320 °C for 60 s) all samples show a TL reduction around 410 °C in the blue detection window. Pulse annealing experiments for IRSL and pIRIR signals for preheats between 320 °C and 500 °C indicate that the signal stabilities are similar among the different feldspar types, when a higher preheat temperature (>320 °C) is used. Thermal activation energies for IRSL and pIRIR signals are largest in K-feldspar and smallest in polymineral fine grains, in both blue and UV detection windows for both fast time-resolved (TR) and continuous wave (CW) signals. These results suggest that IRSL and pIRIR signals in polymineral fine grains originate mainly from Na-feldspar grains; these signals are less thermally stable than those from K-feldspar, but a more stable signal (presumably from K-feldspar grains) can be obtained using a higher preheat temperature.  相似文献   

7.
This study investigated the relationship between the natural luminescence intensity, the amplitude of anomalous fading and the apparent IRSL age of a suite of feldspar single grains. Correlating natural luminescence with fading may simplify the identification of weakly to non-fading feldspars grains in sediments. In our single grain experiments, the mean fading corrected IRSL age obtained from a small population of bright grains is close to the expected depositional age of the sediment investigated. It is proposed that in dating programs, more attention should be given to bright feldspar grains as they are the most stable grains in the population.  相似文献   

8.
A museum sample of perthitic feldspar was used to study the production of post-IR IRSL signals. It was found that traps responsible for low temperature (∼230 °C) TL peaks play an unexpectedly important role in post-IR IRSL production. During the production of the IRSL signal during low temperature IR stimulation (100 °C), electrons are optically transferred from IRSL traps into these TL traps which have been emptied by the preceding preheat at 320 °C. Subsequent heating to 300 °C causes thermal transfer of these electrons from these traps back into previously emptied IRSL traps which are related to the high temperature TL peaks. IR stimulation of these electrons results in post-IR IRSL. Thus the initial source of the post-IR IRSL signal is the same as the IRSL signal, with a role being played by intermediate traps that give rise to TL signals between 200 and 250 °C, and the final source is similar to that of the IRSL signal. Therefore the post-IR IRSL signal is a by-product of the production of the IRSL signal. It was also found that post-IR IRSL production with high post-IR IR stimulation temperatures (e.g. >230 °C) additionally includes a small contribution from the post-IR isothermal decay of high temperature TL peaks that are not sensitive to IR stimulation at low stimulation temperatures.  相似文献   

9.
Laboratory storage and preheating experiments were carried out to study anomalous fading of infrared stimulated luminescence (IRSL) signals derived from polymineral grains extracted from Chinese loess. Results of laboratory storage at 150 °C and higher temperature preheating experiments showed that such thermal treatments could lessen the effect of fading and indicated the presence of both thermal and non-thermal fading. In addition, the behavior of natural fading over the past 9–170 ka was investigated. By comparing with independent ages (obtained from fine-grain quartz using the optically stimulated luminescence (OSL) signal for the past 130 ka and the thermally transferred OSL (TT-OSL) signal in the age range of 130–170 ka) for the same samples, equivalent doses obtained from the IRSL signals were found to be underestimated by different amounts since the penultimate glacial; there was a linear dependence when the age underestimation was plotted against geological time.  相似文献   

10.
Aspects of the red thermoluminescence (RTL) and IR (833±5 nm) stimulated red (λemission=600–750 nm) luminescence (orange-red IRSL) of potassium feldspar from different origins are described. Anomalous fading of RTL (300–500°C) from a selection of potassium feldspar samples was tested. High temperature RTL (300–450°C) exhibits less anomalous fading in comparison to UV luminescence, for the samples under study. The result supports the contention of Zink and Visocekas (1997) that the red TL emission from feldspar does not fade. It was found that RTL is bleachable due to IR exposure, and the relationship between RTL lost and orange-red IRSL produced is linear. It is shown that around one third of the trapped charge responsible for the orange-red IRSL signal gives rise to an RTL signal, indicating that some traps and luminescence centres are shared for RTL and orange-red IRSL.

Specific characteristics of orange-red IRSL from feldspar were identified. It was found that the orange-red IRSL decay curve is bleachable by IR and daylight and can be described by the sum of three exponential components. Orange-red IRSL fading was tested. Short-term storage tests (up to 2 weeks) showed no fading. Longer-term (ca. months) storage of orange-red IRSL do in fact indicate fading, though at levels considerably lower than for the UV emission. The contradictory result is possibly due to the detection wavelength. As such, it is highly likely that the long-term fading experiment is strongly influenced by the feldspar emission centred at ca. 570 nm, which exhibits anomalous fading, while the short-term fading experiment is more greatly influenced by the far red emission centred at ca. 710 nm that in comparison to UV emission shows no or less fading.  相似文献   


11.
The effects of prior infrared stimulation on the TL emission of three feldspar minerals (albite, sanidine and orthoclase) were studied. Different reductions in the TL signal were observed in the three samples: albite (Na-rich feldspar) was only partially affected by stimulation while there was an important decrease of TL signal in sanidine and orthoclase (K-rich and intermediate K–Na feldspars). A similar behaviour was also detected when the samples were illuminated at different temperatures. Moreover, when the IR stimulation was performed at temperatures below 100 °C, there was a charge transfer effect (PTTL) that progressively rose, moving from albite to sanidine to orthoclase. A dose recovery experiment was also performed, varying both preheat and measurement temperature. Our results are a further confirmation of the complexity and variability of the luminescence processes in feldspars. They also indicate that the luminescence characteristics of the albite we dealt with are particularly useful for dosimetric application.  相似文献   

12.
The purpose of the present study is to identify the effect of the increasing temperature IR stimulation to the component-resolved OSL luminescence signal of mixed quartz-feldspars material. Post IR OSL signals measured at 110 °C were analysed via only general order kinetic terms, while IR signals obtained at increasing temperatures were de-convolved using the sum of general order kinetics plus a tunnelling component. By increasing stimulation temperature, it was demonstrated that IRSL at temperatures above 50 °C does not only stimulate feldspar but also stimulates both fast and medium quartz OSL components. In the temperature range between 175 and 250 °C, the IRSL initial intensity is dominated by the fast OSL component. Estimated equivalent doses using either Post-IR175.OSL110 as well as IRSL175 (with the indices indicating the measurement temperature) are in good agreement between each other, due to both stimulating quartz. Finally, the physical meaningfulness of the fitting parameters for the tunnelling component is also discussed.  相似文献   

13.
Various optically stimulated luminescence signals from K-feldspar have been used to determine the equivalent doses of sediment samples. Understanding the properties of these optical signals is critical to evaluate their applicability and limitations to optical dating. In this paper, some properties of IRSL, post-IR OSL and post-IR IRSL signals (detected in the UV region using U-340 filters) from a museum sample of K-feldspar were investigated by analyzing the relationships between optical and TL signals, and the effect of optical bleaching and heating on optical signals. The trap parameters of the different optical signals were calculated using the pulse annealing method. The results show that this sample exhibits two regenerated TL peaks at ~140 and ~330 °C. Corresponding to the low temperature TL peak, the OSL and post-IR OSL signals appear to be more associated with lower temperature TL than the IRSL signal measured at 50 °C. Corresponding to the high temperature TL peak, the post-IR IRSL signals mainly originate from the more thermally stable traps associated with the high temperature TL, compared with the IRSL and post-IR OSL signals. However, the post-IR IRSL225 °C signal is shown to be hard to be bleached by blue light and simulated sunlight, compared with the IRSL50 °C and low temperature post-IR IRSL signals. The implication for optical dating is that the elevated temperature post-IR IRSL signals can be preferentially applied over other signals from K-feldspar, but it is desirable that the effectiveness of the pre-depositional zeroing of these signals is assessed.  相似文献   

14.
A strong dependence of thermal activation energy (TAE) on infrared (IR) stimulation time for the infrared stimulated luminescence (IRSL) signal was observed for K-feldspar grains extracted from several sediments and granites from China. A TAE value as low as ~0.1 eV was observed at the beginning of IR stimulation and increased to ~0.45 eV after 90 s. For a trap depth of ~2 eV below the conduction band for the IRSL traps, the TAE value of ~0.45 eV is consistent with the energy gap between the excited states (~0.5 eV below the conduction band) and conduction band. This phenomenon is explained as the result of the coexistence of thermally assisted recombination via conduction band or band-tail states hopping and athermal tunnelling recombination of electrons from the excited states under IR stimulation, leading to the observation of a higher anomalous fading rate in the initial part of the IRSL decay curve.  相似文献   

15.
The single aliquot technique has been applied to single grains of K-feldspar extracted from a well-dated late-glacial marine sediment sample for which standard luminescence dating yielded ages that were in excess of the expected age. Natural infrared-stimulated luminescence (IRSL) intensities as well as single grain palaeodoses show a wide range of values. Most of the bright grains yield equivalent doses largely in excess of the expected palaeodose, considering the depositional age of the sample. The luminescence emitted by the brightest grains would dominate the signal emitted from aliquots containing many grains. This explains the overestimation of ages obtained using standard luminescence techniques for the sample investigated. Palaeodoses obtained from grains that exhibit low IRSL intensities are close to the expected dose. However, the age derived from these grains is lower than the expected age. Anomalous fading is believed to be the main cause for the age underestimation. This study is the first demonstration of the feasibility of dating a sedimentary event using the luminescence of a single mineral grain.  相似文献   

16.
The fadia method has been recently introduced in luminescence as one that may potentially resolve the problem of anomalous fading and age shortfalls in IRSL dating of sediments. This method takes advantage of the differential fading rates of single feldspar grains and allows one to extrapolate to zero fading. This paper describes step by step the protocol used in the Montréal laboratory. The application of the method is shown to be hampered by the occurrence of faintly luminescent feldspar minerals, and/or unbleached grains in the dated sediment samples.  相似文献   

17.
Dating quaternary sediments by thermoluminescence (TL) or optically stimulated luminescence (OSL) calls for a detailed knowledge of the luminescence of feldspars. TL of the various alkali feldspars ((K, Na) Si3AlO8) display many common features, and some of these cause great difficulties for dating. After long storage following ionizing irradiation, the TL of most alkali feldspars is known to fade away by “anomalous fading”, which is incompatible with dating. This effect had been attributed to tunnel recombination. Following irradiation, a very intense tunnelling afterglow is observed at temperatures down to liquid nitrogen, in accordance with the observed rate of fading. This emission has a Gaussian spectrum entirely in the infrared (IR) with a maximum at 1.7 eV. It displays an important thermal quenching from 77 to 300 K. Its intensity is related with the ‘disorder’ of the crystal lattice. At higher temperatures, in TL proper, two emission bands can be separated. One is the well-studied complex visible emission, distributed over the spectral region from UV to orange, but mostly ‘blue’. The other is the ‘infrared’ band already observed at lower temperatures, which is attributed to Fe3+ ions. These two bands are clearly separated, with the spectral maxima, respectively, below and above 600 nm. They have also different kinetics, the glow peaks temperatures are different. But these two different bands are also coupled in many ways, they have parallel growth and fading. With ‘disordered’ feldspars, the ‘blue’ emission displays anomalous fading, which is stronger than that of the ‘infrared’. The infrared emission is more stable, which may be interesting for the purpose of dating.  相似文献   

18.
Luminescence dating of individual sand-sized grains of quartz is a well-established technique in Quaternary geochronology, but the most ubiquitous mineral on the surface of the Earth—feldspar—has received much less attention at the single-grain level. In this study, we estimated single-grain equivalent dose values and infrared stimulated luminescence (IRSL) ages for K-rich feldspar (KF) grains from a fluvial sample underlying Youngest Toba Tuff (YTT) deposits in north-central India, and compared these ages (corrected for anomalous fading) with those obtained from individual grains of quartz from the same sample. Both minerals have broadly similar single-grain age distributions, but both are greatly overdispersed and most grains have ages substantially younger than the expected age of the YTT deposit (~74 ka). Almost half (45%) of KF grains used for age calculation have fading rates statistically consistent with zero, but the age distribution of these grains is as dispersed as that of the entire population. We obtained a similar distribution of ages calculated for 51 grains using their individually measured internal K contents, which exhibited only minor grain-to-grain variation. Given the lack of dependency of single-grain ages on the measured fading rates and internal K contents, and the overall adequacy of bleaching of grains collected from a sandbar in the modern river channel, we consider the spread in ages is most likely due to mixing, at the time of deposition and after the YTT event, of potentially well-bleached fluvially-transported sediments with older grains derived from slumping of riverbank deposits. Some spread may also be due to natural variations in the IRSL properties of individual KF grains.  相似文献   

19.
《Radiation measurements》2009,44(2):149-157
In this study, we applied optically stimulated luminescence (OSL) dating to two fine grain sediment samples collected at Jeongokri, Korea. A single aliquot regenerative dose (SAR) procedure was applied to both polymineral grains and to chemically isolated (H2SiF6) quartz grains of 4–11 μm diameter. For polymineral fine grains, the OSL IR depletion ratio and the equivalent dose (De) plateau test appear to be equally sensitive indicators of appropriate IR stimulation time for use in the ‘double SAR’ protocol. Additionally, the OSL IR depletion ratio test gives an indication of the relative mineral composition of the samples, hence providing an assessment of the likelihood of obtaining a quartz-dominated [post-IR] OSL signal. Use of higher preheat temperatures would assist in thermally eroding the non-quartz component of the [post-IR] OSL signal from polyminerals. For the quartz fine grains, data from both natural De determinations and laboratory dose recovery tests are required to identify the appropriate preheat temperatures for dating, due to problems of thermal transfer. This phenomenon is particularly exaggerated for these samples due to the large De values (≥350 Gy) and hence low slope of the dose–response curve. The double SAR method cannot be applied ubiquitously, even after careful and rigorous study of one sample from a section. Quartz OSL dating using a range of preheat temperatures is suggested to be the most suitable method for OSL dating of fine grain sediments.  相似文献   

20.
After bleaching the optically stimulated luminescence (OSL) signal to a low residual level, the signal has been found to increase during subsequent storage or preheating. This effect is well known in quartz as “recuperation of OSL after bleaching” (Aitken, M.J., Smith, B.W., 1988. Optical dating: recuperation after bleaching. Quat. Sci. Rev. 7. 387–393.). A better understanding of recuperation in feldspars could help the dating specialist, because this process might be different from the recuperation observed in quartz. This paper highlights a few examples of a larger study, which cannot be shown here in complete detail. We carried out a recuperation study of infrared-stimulated luminescence (IRSL) of different feldspars from a mineral collection, mainly alkali feldspars and one albite. The samples were irradiated with doses of 200, 1000 and 2500 Gy in a 60Co gamma cell. Subsequently, the samples were stored in the dark at room temperature (3 weeks up to 6 months, depending on the applied dose), so that the very intense irradiation-induced phosphorescence can decrease for many orders of magnitude. The emitted OSL was measured through detection filters also used in dating (Schott UG 11, Hoya U 340 for detection of near UV-emissions and Schott BG 39 for detection in the visible range). Recuperation times up to 100 days were used. The recuperated-OSL emissions were measured either with the optical filters mentioned above or with a modified experimental set-up using a variable interference filter with a continuous detection range from 400 to 700 nm. In some feldspars very intense recuperation signals (up to 100% and more of the initial signal) were observed when optical stimulation was performed with IR and broadband detection using the BG 39 or when detection was carried out in the near ultraviolet region. The IRSL emissions at 410 and 560 nm, measured with the interference filter, showed no recuperation despite a clearly detectable first shine-down.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号