首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The paramagnetic contributions to water-proton-spin-lattice relaxation rate constants in protein systems spin-labeled with nitroxide radicals were re-examined. As noted by others, the strength of the dipolar coupling between water protons and the protein-bound nitroxide radical often appears to be larger than physically reasonable when the relaxation is assumed to be controlled by 3-dimensional diffusive processes in the vicinity of the spin label. We examine the effects of the surface in biasing the diffusive exploration of the radical region and derive a relaxation model that incorporates 2-dimensional dynamics at the interfacial layer. However, we find that the local 2-dimensional dynamics changes the shape of the relaxation dispersion profile but does not necessarily reproduce the low-field relaxation efficiency found by experiment. We examine the contributions of long-range dipolar couplings between the paramagnetic center and protein-bound-water molecules and find that the contributions from these several long range couplings may be competitive with translational contributions because the correlation time for global rotation of the protein is approximately 1000 times longer than that for the diffusive motion of water at the interfacial region. As a result the electron-proton dipolar coupling to rare protein-bound-water-molecule protons may be significant for protein systems that accommodate long-lived-water molecules. Although the estimate of local diffusion coefficients is not seriously compromised because it derives from the Larmor frequency dependence, these several contributions confound efforts to fit relaxation data quantitatively with unique models.  相似文献   

2.
Longitudinally detected ESR (LODESR) involves transverse ESR irradiation with a modulated source and observing oscillations in the spin magnetization parallel to the main magnetic field. In this study, radiofrequency-LODESR was used for oximetry by measuring the relaxation times of the electron. T1e and T2e were measured by investigating LODESR signal magnitude as a function of detection frequency. We have also predicted theoretically and verified experimentally the LODESR signal phase dependence on detection frequency and relaxation times. These methods are valid even for inhomogeneous lines provided that T1e>T2e. We have also developed a new method for measuring T1e, valid for inhomogeneous spectra, for all values of T1e and T2e, based on measuring the spectral area as a function of detection frequency. We have measured T1e and T2e for lithium phthalocyanine crystals, for the nitroxide TEMPOL, and for the single line agent Triarylmethyl (TAM). Furthermore, we have collected spectra from aqueous solutions of TEMPOL and TAM at different oxygen concentrations and confirmed that T1e values are reduced with increased oxygen concentration. We have also measured the spin-lattice electronic relaxation time for degassed aqueous solutions of the same agents at different agent concentrations. T1e decreases as a function of concentration for TAM while it remains independent of free radical concentration for TEMPOL, a major advantage for oxygen mapping. This method, combined with the ability of LODESR to provide images of exogenous free radicals in vivo, presents an attractive alternative to the conventional transverse ESR linewidth based oximetry methods.  相似文献   

3.
137Cs is an important component of nuclear waste which may pollute water. Its migration in natural environments is slowed down by adsorption on minerals. Cesium adsorption on akaganeite (beta-FeOOH) particles, dextran-coated ferrihydrite (5 Fe(2)O(3)-9H(2)O) particles, and ferritin in aqueous solutions is studied with (133)Cs nuclear magnetic resonance measurements. The longitudinal relaxation time (T(1)) of (133)Cs in the presence of such magnetic particles depends on whether the ions bind to the particle or not. T(1) of (133)Cs ions in aqueous solutions containing the same amount of magnetized particles will not depend on cesium concentration if relaxation is governed by diffusion (when cesium is not able to bind), but it will depend on cesium concentration if exchange governs relaxation (when cesium is able to bind). The method is successfully tested using TEMPO, a nitroxide stable free radical whose relaxation is due to diffusion. (133)Cs relaxation in solutions of ferritin, akaganeite, and dextran-coated ferrihydrite particles is found to result from a cationic exchange of cesium ions between particles surface and bulk ions, owing to adsorption. The effect of pH on (133)Cs relaxation in solutions of the particles is consistent with the adsorption properties of cations on hydrated iron oxides.  相似文献   

4.
We utilize the paramagnetic contribution to proton spin-lattice relaxation rate constants induced by freely diffusing charged paramagnetic centers to investigate the effect of charge on the intermolecular exploration of a protein by the small molecule. The proton NMR spectrum provided 255 resolved resonances that report how the explorer molecule local concentration varies with position on the surface. The measurements integrate over local dielectric constant variations, and, in principle, provide an experimental characterization of the surface free energy sampling biases introduced by the charge distribution on the protein. The experimental results for ribonuclease A obtained using positive, neutral, and negatively charged small nitroxide radicals are qualitatively similar to those expected from electrostatic calculations. However, while systematic electrostatic trends are apparent, the three different combinations of the data sets do not yield internally consistent values for the electrostatic contribution to the intermolecular free energy. We attribute this failure to the weakness of the electrostatic sampling bias for charged nitroxides in water and local variations in effective translational diffusion constant at the water-protein interface, which enters the nuclear spin relaxation equations for the nitroxide-proton dipolar coupling.  相似文献   

5.
Existing published E.P.R., nuclear spin lattice relaxation, dynamic nuclear polarization and electron-electron double-resonance data on the plastic phase of cyclohexane doped with a nitroxide free radical are re-examined and analysed in a consistent way. It is shown that (i) the local concentration of free radicals is higher than foreseen, assuming a uniform distribution and (ii) the molecular motions near the radical are slower than in the pure system. These results suggest that this system should be pictured as a heterogeneous solid solution where the local properties around the radicals are significantly different from those far from the radicals.  相似文献   

6.
Free radicals dissolved in oxygen-containing solutions give rise to EPR spectra characterized by very broad lines due to Heisenberg spin exchange. In the method herein proposed oxygen is consumed at a constant rate, within the cavity of an EPR spectrometer, by alkyl radicals generatedin situ by thermal decomposition of an aliphatic azo compound in the presence of a nitroxide probe. The effect of decreasing the oxygen concentration is to reduce the width, and therefore to increase the height of the spectral lines of the nitroxide, which reach a maximum when oxygen has been completely consumed. From the knowledge of the rate of generation of the alkyl radicals, the oxygen solubility in a given solvent can be easily determined.  相似文献   

7.
We have studied theoretically the relaxation behaviour of excitons in cuprous oxide (Cu(2)O) at ultra-low temperatures when excitons are confined within a potential trap by solving numerically the Boltzmann equation. As relaxation processes, we have included in this paper deformation potential phonon scattering, radiative and non-radiative decay and Auger decay. The relaxation kinetics has been analysed for temperatures in the range between 0.3 and 5?K. Under the action of deformation potential phonon scattering only, we find for temperatures above 0.5?K that the excitons reach local equilibrium with the lattice, i.e.?that the effective local temperature is coming down to the bath temperature, while below 0.5?K a non-thermal energy distribution remains. Interestingly, for all temperatures the global spatial distribution of excitons does not reach the equilibrium distribution, but stays at a much higher effective temperature. If we include further a finite lifetime of the excitons and the two-particle Auger decay, we find that both the local and the global effective temperature do not come down to the bath temperature. In the first case we find that a Bose-Einstein condensation (BEC) occurs for all temperatures in the investigated range. Comparing our results with the thermal equilibrium case, we find that BEC occurs for a significantly higher number of excitons in the trap. This effect could be related to the higher global temperature, which requires an increased number of excitons within the trap to observe the BEC. In the case of Auger decay, we do not find a BEC at any temperature due to the local heating of the exciton gas.  相似文献   

8.
Light scattering and ultraviolet fluorescence spectra are obtained for highly diluted aqueous solutions with additions of substances that are able to affect the processes with the participation of reactive oxygen species (ROS). A heuristic organization model of the water-gas system with an increased ROS concentration is proposed on the assumption that superoxide anion radical molecules can be adsorbed at interfaces (water-gas, water-solid) and lead to generation of local electric and magnetic fields that contribute to further structuring of water near interfaces. Various exposures (mechanical, acoustic, etc.) to water can result in the separation of the positive and negative charges centers and induce long-time processes of relaxation and further evolution of the system. An increase in the concentration of adsorbed ROS molecules can increase strength of electromagnetic fields near local inhomogeneities and make the system sensitive to low-intensity and low-energy exposures.  相似文献   

9.
High-frequency electron paramagnetic resonance (EPR) spectroscopy has been performed on a nitroxide spin-labeled peptide in fluid aqueous solution. The peptide, which follows the single letter sequence, was reacted with the methanethiosulfonate spin label at the cysteine sulfur. The spin sensitivity of high-frequency EPR is excellent with less than 20 pmol of sample required to obtain spectra with good signal-to-noise ratios. Simulation of the temperature-dependent spectral lineshapes reveals the existence of local anisotropic motion about the nitroxide N-O bond with a motional anisotropy tau( perpendicular)/tau( parallel) ( identical with N) approaching 2.6 at 306 K. Comparison with previous work on rigidly labeled peptides suggests that the spin label is reorienting about its side-chain tether. This study demonstrates the feasibility of performing 140-GHz EPR on biological samples in fluid aqueous solution.  相似文献   

10.
We report in situ studies of SiO2 glass under pressure and find that temperature-induced densification takes place in a pressure window. To explain this effect, we study how rigidity of glasses changes under pressure, with rigidity percolation affecting the dynamics of local relaxation events. We link rigidity percolation in glasses to other effects, including a large increase of crystallization temperature and logarithmic relaxation under pressure.  相似文献   

11.
The measurement of spin-lattice relaxation rates from spin labels, such as nitroxides, in the presence and absence of spin relaxants provides information that is useful for determining biomolecular properties such as nucleic acid dynamics and the interaction of proteins with membranes. We compare X-band continuous wave (CW) and pulsed or time domain (TD) EPR methods for obtaining spin-lattice relaxation rates of spin labels across the entire range of rotational motion to which relaxation rates are sensitive. Model nitroxides and spin-labeled biological species are used to illustrate the potential complications that arise in extracting relaxation data under conditions typical to biological experiments. The effect of super hyperfine (SHF) structure is investigated for both CW and TD spectra. First and second harmonic absorption and dispersion CW spectra of the nitroxide spin label, TEMPOL, are all fit simultaneously to a model of SHF structure over a range of microwave amplitudes. The CW spectra are novel because all harmonics and microwave phases were acquired simultaneously using our homebuilt CW/TD spectrometer. The effect of the SHF structure on the pulsed free induction decay (FID) and pulsed saturation recovery spectrum is shown for both protonated and deuterated TEMPOL. We present novel pulsed saturation recovery measurements on biological molecules, including spin-lattice relaxation rates of spin-labeled proteins and spin-labeled double-stranded DNA. The impact of structure and dynamics on relaxation rates are discussed in the context of each of these examples. Collisional relaxation rates with oxygen and transition metal paramagnetic relaxants are extracted using both continuous wave and time domain methods. The extent of the errors inherent in the CW method and the advantages of pulsed methods for unambiguously measuring collisional relaxation rates are discussed. Spin-lattice relaxation rates, determined by both CW and pulsed methods, are used to determine the electrostatic potential on the surface of a protein.  相似文献   

12.
There exists hydroxylamine impurity in 5-(diethoxyphosphoryl)-5-methyl-l-pyrroline-l-oxide (DEPMPO) despite the purification by column separation and molecular distillation. Slow oxidation of hydroxylamine impurity to nitroxide is caused by a trace amount of transition metal ions in the solution instead by oxygen, and it can be conveniently inhibited upon the addition of diethylene-triaminepentaacetic acid, a transition metal ion chelator. Hydroxylamine impurity in DEPMPO, can also be oxidized to electron spin resonance detectable paramagnetic nitroxide in the presence of mild oxidants, such as K3Fe(CN)6 and CuSO4. The previously recommended procedure for elimination of hydroxylamines was further simplified in the present study. Both hydroxylamine and nitroxide impurities can be removed from the aqueous solution of DEPMPO, by activated charcoal treatment.  相似文献   

13.
The 19F nuclear spin-lattice relaxation rate constants were measured as a function of magnetic field strength for 1,12-diaminododecane labeled at one end with a nitroxide radical and at the other with a trifluoromethyl group. The magnetic relaxation dispersion profile (MRD) reports the spectral density function appropriate to the end-to-end correlation function for the doubly labeled molecule. After extrapolation to zero concentration to eliminate the intermolecular relaxation contribution to relaxation, the resulting intramolecular MRD profile was compared with several model approaches. The rotational model for the spectral density functions as included in the Solomon-Bloembergen-Morgan equations does not describe the data well. The earlier model of Freed for nuclear spin relaxation induced by a freely diffusing paramagnetic co-solute is not rigorous for this case because the paramagnet is tethered to the observed nuclear spin and only a restricted space in the immediate vicinity of the nuclear spin is accessible for pseudo-translational diffusion of one end of the molecule with respect to the other. A generalization of the Torrey model for magnetic relaxation by translational diffusion developed by Nevzorov and Freed, which includes the effect of restrictions imposed by the finite length of the chain, describes the experiment within experimental errors. A simple modification of the Hwang-Freed model that does not specifically include the dynamical effects of the finite tether also provides a good approximation to the data when the tether chain is sufficiently long.  相似文献   

14.
The efficiency of Overhauser dynamic nuclear polarization (DNP) depends on the local dynamics modulating the dipolar coupling between the two interacting spins. By attaching nitroxide based spin labels to molecules and by measuring the 1H DNP response of solvent water, information about the local hydration dynamics near the spin label can be obtained. However, there are two commonly used types of nitroxide ring structures; a pyrroline based and a piperidine based molecule. It is important to know when comparing different experiments, whether changes in DNP enhancements are due to changes in local hydration dynamics or because of the different spin label structures. In this study we investigate the key parameters affecting DNP signal enhancements for 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrrolin-1-oxyl, a 5-membered ring nitroxide radical, and for 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy, a 6-membered ring nitroxide radical. Using X-Band DNP, field cycling relaxometry, and molecular dynamics simulations, we conclude that the key parameters affecting the DNP amplitude of the 1H signal of water to be equal when using either nitroxide. Thus, experiments measuring hydration dynamics using either type of spin labels may be compared.  相似文献   

15.
Entire luminescence spectrum of a commercial photosensitizer Radachlorin in aqueous solution has been recorded under laser excitation at 660 nm and analyzed. The peak of singlet oxygen phosphorescence at 1274 nm has been observed. The results obtained were compared with those recorded with laser excitation at 405 nm and reported earlier. The comparison showed the similarity of relaxation and luminescence processes occurring in both cases. Effective absorption cross sections were determined at each excitation wavelength, it was also shown that the singlet oxygen quantum yield is independent of photosensitizer concentration. The lifetime of the first excited triplet state in Radachlorin was determined. The results obtained can be used for optimization of the conditions of singlet oxygen generation and detection in solutions and biological samples.  相似文献   

16.
A paramagnetic molecular voltmeter   总被引:1,自引:0,他引:1  
We have developed a general electron paramagnetic resonance (EPR) method to measure electrostatic potential at spin labels on proteins to millivolt accuracy. Electrostatic potential is fundamental to energy-transducing proteins like myosin, because molecular energy storage and retrieval is primarily electrostatic. Quantitative analysis of protein electrostatics demands a site-specific spectroscopic method sensitive to millivolt changes. Previous electrostatic potential studies on macromolecules fell short in sensitivity, accuracy and/or specificity. Our approach uses fast-relaxing charged and neutral paramagnetic relaxation agents (PRAs) to increase nitroxide spin label relaxation rate solely through collisional spin exchange. These PRAs were calibrated in experiments on small nitroxides of known structure and charge to account for differences in their relaxation efficiency. Nitroxide longitudinal (R(1)) and transverse (R(2)) relaxation rates were separated by applying lineshape analysis to progressive saturation spectra. The ratio of measured R(1) increases for each pair of charged and neutral PRAs measures the shift in local PRA concentration due to electrostatic potential. Voltage at the spin label is then calculated using the Boltzmann equation. Measured voltages for two small charged nitroxides agree with Debye-Hückel calculations. Voltage for spin-labeled myosin fragment S1 also agrees with calculation based on the pK shift of the reacted cysteine.  相似文献   

17.
We report measurements of free diffusivity D(0) and relaxation times T(1) and T(2) for pure C(2)F(6) and C(3)F(8) and their mixtures with oxygen. A simplified relaxation theory is presented and used to fit the data. The results enable spatially localized relaxation time measurements to determine the local gas concentration in lung MR images, so the free diffusivity D(0) is then known. Comparison of the measured diffusion to D(0) will express the extent of diffusion restriction and allow the local surface-to-volume ratio to be found.  相似文献   

18.
The absolute concentrations of a nitroxide radical in samples in a loop-gap resonator (LGR) were determined by using a radio-frequency (about 720 MHz) electron paramagnetic resonance (EPR) imaging system. EPR imaging of phantoms containing a nitroxide radical, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidin-1-yloxy (carbamoyl-PROXYL), dissolved in various concentrations of an aqueous sodium chloride solution was made to investigate the influence of dielectric losses and sample position within the LGR. As it was found that these influences on the signal intensity were sufficiently small (less than 6%), it is possible to use identical radical solutions in which the radical is dissolved in a known concentration as an internal marker. Two phantoms containing aqueous solutions of 3 mM (as a marker) and 1, 2, 3, 4, or 5 mM (as a sample) carbamoyl-PROXYL were placed together in the LGR. From EPR images of these phantoms, the absolute concentration of the sample could be calculated by using the gray-scale value (i.e., the signal intensity) of the marker and sample within a small margin of error (about 4%).  相似文献   

19.
A method of improving relaxation-induced dipolar modulation enhancement (RIDME) performance by an artificial increase of electron spin–lattice relaxation rate is introduced and tested on a model nitroxide biradical. A substantial increase of its electron spin–lattice relaxation rate is achieved by the addition of a fast-relaxing paramagnetic holmium complex to the sample solution. The electron spin–spin relaxation rate of the nitroxide does not change dramatically upon this addition. The suggested method allows obtaining a deep dipolar modulation in the RIDME experiment, which is free from distortions caused by spectral diffusion processes.  相似文献   

20.
Broadband dielectric spectra of a variety of aqueous solutions are evaluated as to indications of water that may be considered bound. Static permittivity decrements due to depolarizing internal electric fields, from kinetic depolarization, as well as from dielectric saturation are discussed. The latter effect reflects the preferential orientation of water permanent dipole orientations within strong Coulombic field of small ions, especially multivalent cations. Such water may be considered bound even though rapid rotations around the orientation of the electric dipole moment are definitely possible and also a fast exchange of water molecules between the hydration region and the bulk may take place. Water exhibiting large dielectric relaxation times, as typical for regions with large local concentration of foreign matter, may also be named bound. However, no clear evidence for interaction energies exceeding the hydrogen bond energy of pure water has been found. Rather enhanced relaxation times at low water content reflect the small concentration of hydrogen bonding sites and thus low probability density for the formation of a new hydrogen bond. Potential interferences of the water relaxation with relaxations from other molecules or from ionic structures are mentioned briefly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号