首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The blue-green algaMicrocystis aeruginosa contains a branched glucan constructed of D-glucopyranose residues with α-1,4 bonds in the main chain and α-1,6 bonds at the points of branching.  相似文献   

2.
Sterols and polysaccharides of green alga Caulerpa lentillifera grown under laboratory conditions and in mariculture and polysaccharides of green alga C. sertularioides grown under natural conditions were studied. The sterol fraction consisted of C27-C29 steroidal alcohols with Δ5-unsaturation in the steroid core regardless of the growth conditions. The dominant (79.9%) steroid component of the sterol fraction was clionasterol. The water-soluble fraction of C. lentillifera grown under laboratory conditions was a mixture of 1,4-α- and 1,3-β-D-glucans and protein. The same fraction isolated from C. lentillifera grown in mariculture contained only protein. The water-soluble fraction of C. sertularioides grown under natural conditions contained 1,3;1,6-β-D-galactan sulfated at C2. The principal components of the base-soluble polysaccharide fractions from all algae samples were 1,4-α-D-glucans. Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 5-8, January-February, 2009.  相似文献   

3.
The action modes of an oligosaccharide-producing multifunctional amylase (OPMA) were investigated using glucose and some oligosaccharides as its substrates. OPMA did not cause the hydrolysis of maltose or isomaltose, but it catalyzed the α-1,6-transglycosylation of maltose to produce isomaltose or did the self-condensation of isomaltose to form isomaltotetraose and 4-O-α-isomaltosyl isomaltose. OPMA exhibited strong α-1,6-transglycosylation activity in addition to its α-1,4-hydrolytic activity on higher oligosaccharides substrates rather than bisaccharides. OPMA displayed high acceptor specificity in its transglycosylation or condensation reaction. OPMA seemed to only take glucose or isomaltose as the acceptor molecule in its transglycosylation or condensation reaction, which made glucose or isomaltose form higher products, and as a result, glucose or isomaltose were absent in the final products. In view of the simultaneously formation of several transglycosylation or condensation products, it was predicted that there might be separate donor and acceptor sites in OPMA’s active center and the fact that the catalytically active form of this enzyme included its homodimer or homotrimer supported this prediction. Accordingly, a special pathway, isomaltose pathway, for OPMA catalysis was proposed to emphasize the central or important signification of isomaltose in OPMA catalysis.  相似文献   

4.
Comparison and characterization of polysaccharides from natural and cultured Cordyceps on the basis of their chemical characteristics such as glycosidic linkages were performed for the first time using saccharide mapping. The results showed that polysaccharides from most of the natural and cultured Cordyceps had similar responses to enzymatic digestion. These polysaccharides mainly contained (1→4)-β-D-glucosidic linkages, and (1→4)-α-glucosidic, (1→6)-α-glucosidic, 1,4-β-D-mannosidic, as well as (1→4)-α-D-galactosiduronic linkages also existed in some polysaccharides. Especially, natural and cultured Cordyceps polysaccharides could be discriminated on the basis of high performance liquid chromatography profiles of pectinase hydrolysates, which is helpful to control the quality of polysaccharides from Cordyceps.  相似文献   

5.
Bacillus subtilis Bios 11 strain was previously isolated and identified. This strain naturally produces a high level of α-amylase. The multicopy (pS1) plasmid that carries the complete alkaline protease aprA gene was introduced to this host strain by transformation. The newly constructed strain was found to express the aprA gene and produces a high level of alkaline protease. The level of α-amylase production was not affected compared with the parent strain. The pS1 plasmid in the new host was proved to be segregationally and structurally stable, and the multicopy aprA gene was expressed at the stationary phase. This expression did not affect growth rate and sporulation frequency. Moreover, the level of α-amylase was maintained. Both alkaline protease and α-amylase enzymes were purified using a single-step affinity chromatography column. The use of the newly constructed strain would be valuable to the enzyme industry and would promote recycling of some food-processing wastes.  相似文献   

6.
In this work, a real-time sampling/analytical method for on-line measurements of two newly discovered cyclomaltodextrinases (CDases) has been developed and evaluated. This novel methodology not only allows the final products to be investigated, but it also reveals enzyme-specific differences in the degradation pathways during the hydrolysis of different substrates, which is a great advantage in the important tasks of investigating the mechanisms of and classifying new hydrolases, and is an advantage that conventional techniques cannot offer. Two different enzymes, one CDase from Laceyella sacchari (LsCda13) and one from Anoxybacillus flavithermus (AfCda13), were investigated during the hydrolysis of α-, β- and γ-cyclodextrin, and the hydrolysis products were sampled via a microdialysis probe and injected on-line every 30 min into a high-performance anion exchange chromatography system equipped with a pulsed amperometric detector (HPAEC–PAD), where they were identified. The enzymes yielded the same end-products, maltose and glucose, in an approximate molar ratio of 2:1, but they exhibited distinctly different patterns of intermediate product formation before reaching the end-point. LsCda13 had a more random distribution of the intermediate products, whereas AfCda13 showed the distinct intermediate production of maltotriose, which in some cases accumulated.  相似文献   

7.
A monoclonal antibody (MAb) against amylase-pullulanase enzyme fromBacillus circulons, which hydrolyzes not only theα-1,6-glycosidic linkage but also theα-1,4-glycosidic linkage to the same extent, has been produced by the fusion of BALB/c mouse spleen cells immunized with the native enzyme and P3x63Ag8U1 myeloma cells, and examined for inhibition of pullulanase activity in order to characterize the catalytic site of the pullulanase. The MAb recognizes active enzyme, but not the SDS-denatured or heat-inactivated protein, indicating that the antibody is highly conformational-dependent, specific for active enzyme. The antibody inhibited the pullulanase activity, but not amylase activity. The monoclonal antibody immunoblotted the enzyme and immunoprecipitated the enzyme. The immunoprecipitation was inhibited in the presence of substrate, pullulan, and the MAb competitively inhibited the binding of pullulan to the enzyme. The MAb, therefore, recognizes the pullulanbinding site of the enzyme. Kinetic analysis showed that the MAb inhibited pullulanase activity with inhibition constant (K i ,) of 0.77Μg/mL, providing evidence that the antibody decreases the catalytic rate of enzyme activity and has an effect on substrate binding. These results strongly confirm the previous observations that APE may have two different active sites responsible for the expression of amylase and pullulanase activities (Kim, C. H. and Kim, Y. S.Eur. J. Biochem. 1995,227, 687–693).  相似文献   

8.
Cyclodextrins (CDs) are cyclic oligasaccharides composed by d-glucose monomers joined by α-1,4-d glicosidic linkages. The main types of CDs are α-, β- and γ-CDs consisting of cycles of six, seven, and eight glucose monomers, respectively. Their ability to form inclusion complexes is the most important characteristic, allowing their wide industrial application. The physical property of the CD-complexed compound can be altered to improve stability, volatility, solubility, or bio-availability. The cyclomaltodextrin glucanotransferase (CGTase, EC 2.4.1.19) is an enzyme capable of converting starch into CD molecules. In this work, the CGTase produced by Bacillus clausii strain E16 was used to produce CD from maltodextrin and different starches (commercial soluble starch, corn, cassava, sweet potato, and waxy corn starches) as substrates. It was observed that the substrate sources influence the kind of CD obtained and that this CGTase displays a β-CGTase action, presenting a better conversion of soluble starch at 1.0%, of which 80% was converted in CDs. The ratio of total CD produced was 0:0.89:0.11 for α/β/γ. It was also observed that root and tuber starches were more accessible to CGTase action than seed starch under the studied conditions.  相似文献   

9.
Glycosyl hydrolase family 16 (GHF16) truncated Fibrobacter succinogenes (TFs) and GHF17 barley 1,3-1,4-β-d-glucanases (β-glucanases) possess different structural folds, β-jellyroll and (β/α)8, although they both catalyze the specific hydrolysis of β-1,4 glycosidic bonds adjacent to β-1,3 linkages in mixed β-1,3 and β-1,4 β-d-glucans or lichenan. Differences in the active site region residues of TFs β-glucanase and barley β-glucanase create binding site topographies that require different substrate conformations. In contrast to barley β-glucanase, TFs β-glucanase possesses a unique and compact active site. The structural analysis results suggest that the tyrosine residue, which is conserved in all known 1,3-1,4-β-d-glucanases, is involved in the recognition of mixed β-1,3 and β-1,4 linked polysaccharide.  相似文献   

10.
An original synthetic route based on multi-glycosylation and selective protection–deprotection steps has been developed which allows a fast access to complex oligomannosides with both α-(1,3),α-(1,6) and α-(1,3),α-(1,4) cores. The later have been linked to modified β-cyclodextrins bearing spacing arms of varying chemical structure and length through peptidic-like coupling, leading to the formation of a range of oligomannosyl cyclodextrin conjugates. Complexation studies with sodium anthraquinone-2-sulfonate (ASANa) and sodium adamantane 1-carboxylate (ACNa) as guest molecules demonstrated that the β-cyclodextrin inclusion properties are preserved. Binding affinity studies using the mannose specific lectin Concanavalin A (Con A) demonstrated the key role of the density and tridimensional structure of the sugar ligand in recognition events.  相似文献   

11.
Thermomucor indicae-seudaticae, a glucoamylase-producing thermophilic mould, was mutagenised using nitrous acid and gamma (60Co) irradiation in a sequential manner to isolate deregulated mutants for enhanced production of glucoamylase. The mutants were isolated on Emerson YpSs agar containing a non-metabolisable glucose analogue 2-deoxy-d-glucose (2-DG) for selection. The preliminary screening for glucoamylase production using starch–iodine plate assay followed by quantitative confirmation in submerged fermentation permitted the isolation of several variants showing varying levels of derepression and glucoamylase secretion. The mutant strain T. indicae-seudaticae CR19 was able to grow in the presence of 0.5 g l−1 2-DG and produced 1.8-fold higher glucoamylase. As with the parent strain, glucoamylase production by T. indicae-seudaticae CR19 in 250-ml Erlenmeyer flasks attained a peak in 48 h of fermentation, showing higher glucoamylase productivity (0.67 U ml−1 h−1) than the former (0.375 U ml−1 h−1). A large-scale cultivation in 5-l laboratory bioreactor confirmed similar fermentation profiles, though the glucoamylase production peak was attained within 36 h attributable to the better control of process parameters. Although the mutant grew slightly slow in the presence of 2-DG and exhibited less sporulation, it showed faster growth on normal Emerson medium with a higher specific growth rate (0.138 h−1) compared to the parent strain (0.123 h−1). The glucoamylase produced by both strains was optimally active at 60 °C and pH 7.0 and displayed broad substrate specificity by cleaving α-1,4- and α-1,6-glycosidic linkages in starch, amylopectin, amylose and pullulan. Improved productivity and higher specific growth rate make T. indicae-seudaticae CR19 a useful strain for glucoamylase production.  相似文献   

12.
Efficient procedures for the regioselective synthesis of fluoroalkyl-containing threefive-, six-, and seven-membered heterocycles as well as of related fused compounds, namely, α,β-epoxyketones, α,β-aziridinylketones, pyrazoles, pyrazolines, isoxazolines, 1,2-dithiolenes, amino- and mercaptopyrimidines, Δ3,5-2-thioxo-1,3,2-thiazaphosphorines, Δ3,5-2-thioxo-1,3,2-oxazaphosphorines, 2,3-dihydro-1,4-diazepines, azirino[1,2-a]quinoxalines, benzo[b]-and naphtho[2,3-b]-1,4-diazepines, and triazolopyridazines, which have been developed by the authors and coworkers, are summarized. The α- and β-functionalized fluoroalkylcontaining carbonyl compounds (β-diketones, β-ketoesters, their salts, regioisomeric β-aminovinyl ketones, β-aminovinylthiones, β-hydroxyketones, α,β-enones, and their halogen derivatives) were used as synthons in the processes of formation of the above-mentioned heterocycles. Dedicated to the memory of Academician I. Ya. Postovskii on his 100th birthday. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1279–1286, July, 1998.  相似文献   

13.
α-Galactosidases has the potential to hydrolyze α-1-6 linkages in raffinose family oligosaccharides (RFO). Aspergillus terreus cells cultivated on wheat bran produced three extracellular forms of α-galactosidases (E1, E2, and E3). E1 and E2 α-galactosidases presented maximal activities at pH 5, while E3 α-galactosidase was more active at pH 5.5. The E1 and E2 enzymes showed stability for 6 h at pH 4–7. Maximal activities were determined at 60, 55, and 50°C, for E1, E2, and E3 α-galactosidase, respectively. E2 α-galactosidase retained 90% of its initial activity after 70 h at 50°C. The enzymes hydrolyzed ρNPGal, melibiose, raffinose and stachyose, and E1 and E2 enzymes were able to hydrolyze guar gum and locust bean gum substrates. E1 and E3 α-galactosidases were completely inhibited by Hg2+, Ag+, and Cu2+. The treatment of RFO present in soy milk with the enzymes showed that E1 α-galactosidase reduced the stachyose content to zero after 12 h of reaction, while E2 promoted total hydrolysis of raffinose. The complete removal of the oligosaccharides in soy milk could be reached by synergistic action of both enzymes  相似文献   

14.
Purification of β-1,3-1,4-glucanase from the cell-free culture fluid of Bacillus subtilis GN156 by affinity chromatography of epoxy-activated sepharose 6B and ultrafiltration technique resulted in homogeneous J1 and partially purified pJ2 enzymes. The molecular weight and pI of J1 were 25 kDa and 3.5, respectively, while those for J2 were 90 kDa and 3.6, respectively. Both β-1,3-1,4-glucanase J1 and pJ2 had optimum pH values of 6–6.5 and an optimum temperature of 60°C. Both enzymes were not inhibited by Li2+ but were inhibited significantly by Ca2+, Cu2+, Mn2+ and Zn2+. However, J1 was slightly inhibited by Fe2+, while pJ2 was inhibited by Mg2+ as well. They were highly specific to only barley β-glucan. K m and V max values of J1 were 1.53 mg/ml and 8,511 μU/ml.min, respectively, while those for pJ2 were 4.36 mg/ml and 7,397 μU/ml.min, respectively. Degradation of barley β-1, 3-1,4-glucan resulted in four different oligosaccharides with 1,3 linkages triose, tetrose, pentose and a high molecular weight (HMW) with 1,3 linkage estimated from their mobilities. The quantitative degradation by the crude enzyme after of incubation yielded in descending order: triose, pentose and tetrose, while that of J1 in descending order yielded: pentose, triose and tetrose. The pJ2 showed low activity yielding a degradation pattern in descending order: pentose, triose, tetraose and a HMW polysaccharide.  相似文献   

15.
Dimethylsulfoxide-solubilized polysaccharides from delignified corn stover and aspen were characterized. The biomass was delignified by two different techniques; a standard acid chlorite and a pulp and paper QPD technique comprising chelation (Q), peroxide (P), and acid-chlorite (D). Major polysaccharides in all fractions were diversely substituted xylan. Xylan acetylation was intact after chlorite delignification and, as expected, xylan from QPD-delignified fraction was de-acetylated by the alkaline peroxide step. The study of DMSO-extractable xylans from chlorite-delignified biomass revealed major differences in native acetylation patterns between corn stover and aspen xylan. Xylan from cell walls of corn stover contains 2-O- and 3-O-mono-acetylated xylan and [MeGlcA-α-(1 → 2)][3-OAc]-xylp units. In addition, aspen xylan also contains 2,3-di-O-acetylated xylose. 1,4-β-d-xylp residues substituted with MeGlcA at O-2 position are absent in chlorite-delignified aspen xylan. Sugar composition in accord with NMR-spectroscopic data indicated that corn stover xylan is arabinosylated while aspen xylan is not. We have shown that corn stover xylan has similar structure with xylans from other plants of Poales order. No evidence was found to indicate the presence of 1,4-β-d-[MeGlcA-α-(1 → 2)][Ara-α-(1 → 3)]-xylp in corn stover xylan fractions.  相似文献   

16.
The enzyme manganese peroxidase (MnP) is produced by numerous white-rot fungi to overcome biomass recalcitrance caused by lignin. MnP acts directly on lignin and increases access of the woody structure to synergistic wood-degrading enzymes such as cellulases and xylanases. Recombinant MnP (rMnP) can be produced in the yeast Pichia pastoris αMnP1-1 in fed-batch fermentations. The effects of pH and temperature on recombinant manganese peroxidase (rMnP) production by P. pastoris αMnP1-1 were investigated in shake flask and fed-batch fermentations. The optimum pH and temperature for a standardized fed-batch fermentation process for rMnP production in P. pastoris αMnP1-1 were determined to be pH 6 and 30 °C, respectively. P. pastoris αMnP1-1 constitutively expresses the manganese peroxidase (mnp1) complementary DNA from Phanerochaete chrysosporium, and the rMnP has similar kinetic characteristics and pH activity and stability ranges as the wild-type MnP (wtMnP). Cultivation of P. chrysosporium mycelia in stationary flasks for production of heme peroxidases is commonly conducted at low pH (pH 4.2). However, shake flask and fed-batch fermentation experiments with P. pastoris αMnP1-1 demonstrated that rMnP production is highest at pH 6, with rMnP concentrations in the medium declining rapidly at pH less than 5.5, although cell growth rates were similar from pH 4–7. Investigations of the cause of low rMnP production at low pH were consistent with the hypothesis that intracellular proteases are released from dead and lysed yeast cells during the fermentation that are active against rMnP at pH less than 5.5.  相似文献   

17.
Multi-component condensation of cyanoselenoacetamide with ethyl 2-furfuryl-idenacetoacetate and liquid alkyl halides, catalyzed byN-methylmorpholine, affords 7-alkylseleno-5-amino-8-cyano-3-ethoxycarbonyl-4-(2-furyl)-2-methyl-1,4-dihydro-1,6-naphthyridines, which have not been described hitherto. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 121–124, January, 2000.  相似文献   

18.
Multi-component condensation of cyanoselenoacetamide with ethyl 2-furfuryl-idenacetoacetate and liquid alkyl halides, catalyzed byN-methylmorpholine, affords 7-alkylseleno-5-amino-8-cyano-3-ethoxycarbonyl-4-(2-furyl)-2-methyl-1,4-dihydro-1,6-naphthyridines, which have not been described hitherto. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 121–124, January, 2000.  相似文献   

19.
Broadband dielectric spectroscopy (1–106 Hz, 183–423 K) and differential scanning calorimetry are employed to analyze the inter- and intramolecular dynamics of a series of random copolymers based on poly(ethylene terephthalate) and poly(1,4-cyclohexylene dimethylene terephthalate). In addition to an interfacial relaxation (α*-process), three dielectric relaxation processes are observed: The α-relaxation (“dynamic glass transition”) and two secondary relaxations (β- and β*-relaxations). The α-relaxation depends sensitively on the composition of the copolymer and shows a rapid slowing down with increasing content of cyclohexylene dimethylene (CHDM) linkages. Besides the β-relaxation, attributed to local motion of the ester group, an additional process (β*-relaxation) is observed on introducing the CHDM linkages. Increasing the content of the latter reduces the strength of the β-relaxation strongly and increases its activation energy by more than 30%. This proves that owing to interactions between the cylohexylene rings and the ester group the β-relaxation no longer has local character only. Received: 28 September 2000 Accepted: 29 January 2001  相似文献   

20.
A water-soluble polysaccharide (CPS-0) was obtained from the root of Cudrania tricuspidata (Carr.) Bur., by hot water extraction (70°C), deproteination using enzymolysis and Sevag method, precipitation with ethanol, and fractionation through DEAE-Sephadex A-50 chromatography. The purity of CPS-0 was determined by HPLC and the structure was elucidated by monosaccharide composition analysis, methylation analysis, GC, GC-MS, NMR spectral (1H-NMR, 13C-NMR, HMQC), UV, IR, and elemental analysis. The CPS-0 was found to contain glucose residues only. The average repeating unit is a decasaccharide having a backbone consisting of 1,4-linked α-D-glucopyranosyl residues to which the side chain consisting of terminal and 1,4-linked α-D-glucopyranosyl residues was attached at position 6 of the branching residues. __________ Translated from Chemical Journal of Chinese Universities, 2007, 28(6): 1088–1091 [译自: 高等学校化学学报]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号