首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An automated gradient high-performance liquid chromatographic method for the determination of etretinate, acitretin and 13-cis-acitretin in plasma was developed, using a column-switching technique. After protein precipitation with ethanol, 0.5 ml of the supernatant was injected onto a precolumn (17 mm x 4.6 mm I.D.), filled with 37-53 microns C18 Corasil. Polar plasma components were washed out using 1% ammonium acetate and 1% acetic acid-acetonitrile (8:2, v/v); the retained retinoids were then transferred to the analytical column (125 mm x 4 mm I.D., filled with 5-microns ODS material) in the backflush mode, separated by gradient elution and detected at 360 nm by UV detection. The limit of quantification was 2 ng/ml and the inter-assay precision in the concentration range 20-1000 ng/ml was between 0.9 and 4.0% for all three compounds. To optimize the recovery for etretinate (greater than 60%), protein was precipitated from plasma with ethanol before injection, instead of direct injection of plasma samples, and a mobile phase containing 20% acetonitrile, instead of pure water or buffer, was used.  相似文献   

2.
A column-switching system for the direct injection of plasma or serum samples, followed by isocratic high-performance liquid chromatography and ultraviolet detection, is described for the simultaneous quantitation of the tricyclic antidepressant amitriptyline, its demethylated metabolite nortriptyline and the E- and Z-isomers of 10-hydroxyamitriptyline and 10-hydroxynortriptyline. The method included adsorption of amitriptyline and metabolites on a reversed-phase C8 clean-up column (10 microns; 20 mm x 4.6 mm I.D.), washing of unwanted material to waste and, after on-line column-switching, separation on a cyanopropyl analytical column (5 microns; 250 mm x 4.6 mm I.D.). The compounds of interest were separated and eluted using acetonitrile-methanol-0.01 M phosphate buffer (pH 6.8) (578:188:235, v/v) within less than 20 min. Various drugs frequently co-administered with amitriptyline or other antidepressants did not interfere with the determinations. In plasma samples spiked with 25-300 ng/ml, the recoveries were between 84 and 112% and the inter-assay coefficients of variation were 3-11%. After a minor modification, as little as 5 ng/ml could be quantitated. There were linear correlations (r greater than 0.99) between drug concentrations of 5-500 ng/ml and the detector signal. The method allows routine measurements of amitriptyline, nortriptyline and hydroxylated metabolites in blood plasma or serum of patients treated with amitriptyline or nortriptyline, and enables the results to be reported within 1 h.  相似文献   

3.
An isocratic high-performance liquid chromatographic (HPLC) method with ultraviolet detection is described for the quantification of the atypical neuroleptic clozapine and its major metabolites, N-desmethylclozapine and clozapine N-oxide, in human serum or plasma. The method included automated solid-phase extraction on C18 reversed-phase material. Clozapine and its metabolites were separated by HPLC on a C18 ODS Hypersil analytical column (5 microns particle size; 250 mm x 4.6 mm I.D.) using an acetonitrile-water (40:60, v/v) eluent buffered with 0.4% (v/v) N,N,N',N'-tetramethylethylenediamine and acetic acid to pH 6.5. Imipramine served as internal standard. After extraction of 1 ml of serum or plasma, as little as 5 ng/ml of clozapine and 10 or 20 ng/ml of the metabolites were detectable. Linearity was found for drug concentrations between 5 and 2000 ng/ml as indicated by correlation coefficients of 0.998 to 0.985. The intra- and inter-assay coefficients of variation ranged between 1 and 20%. Interferences with other psychotropic drugs such as benzodiazepines, antidepressants or neuroleptics were negligible. In all samples, collected from schizophrenic patients who had been treated with daily oral doses of 75-400 mg of clozapine, the drug and its major metabolite, N-desmethylclozapine, could be detected, while the concentrations of clozapine N-oxide were below 20 ng/ml in three of sixteen patients. Using the method described here, data regarding relations between therapeutic or toxic effects and drug blood levels or metabolism may be collected in clinical practice to improve the therapeutic efficacy of clozapine drug treatment.  相似文献   

4.
A novel high-performance liquid chromatographic method for the determination of codeine, norcodeine and morphine in plasma and urine has been developed. The compounds were separated on a cyano column (15 cm x 4.6 mm, 5 microns particle size) using a mobile phase of acetonitrile-triethylamine-distilled water (4:0.1:95.9, v/v) pH 3.1 and then determined by fluorescence detection. Calibration curves in the range 5-200 ng/ml for plasma and 0.1-10 micrograms/ml for urine were linear and passed through the origin. The imprecision and inaccuracy of the assay were less than 10% and the limits of detection were 2 ng/ml for all three compounds in human plasma.  相似文献   

5.
A selective and sensitive method for the determination of piritramide in human plasma is described. A 1-ml aliquot of plasma was extracted with 10 ml of hexane-isoamyl alcohol (99.5:0.5, v/v) (extraction efficiency 86%) after addition of 50 microliters of 2 M ammonia and 20 microliters of aqueous strychnine solution (100 ng per 10 microliters) as internal standard. Gas chromatography was performed with J&W DB-1, 30 m x 0.53 mm I.D. separation column, film thickness 1.5 microns, using an nitrogen-phosphorus-sensitive detector. The assay was linear in the concentration range 3.75-2250 ng/ml (r = 0.999), with a lower limit of detection of 1-2 ng/ml. The precision was determined using spiked plasma samples (10 and 50 ng/ml), with coefficients of variation of 3.5 and 3.1% (intra-day; n = 5) and 4.6 and 4.1% (inter-day; n = 4). In the range 3.75-150 ng/ml, the accuracy of the assay was 3.36%. The method was used for the determination of piritramide plasma concentrations in patients receiving intra- or post-operative analgesia.  相似文献   

6.
A sensitive and specific high-performance liquid chromatographic method has been developed to measure the catechol-O-methyl-transferase (COMT) inhibitor 3,4-dihydroxy-4'-methyl-5-nitrobenzophenone (Ro 40-7592) in human plasma. The compound and the internal standard were extracted from plasma at pH 2 with n-butyl chloride-ethyl acetate (95:5, v/v). The extract was chromatographed on a reversed-phase column (Hypersil ODS, 5 microns) using a mixture of phosphate buffer (0.05 M, pH 2), methanol and tetrahydrofuran (45:55:5, v/v/v) as the mobile phase. Long-retained components were removed from the system by means of a simple column-switching system. Quantification of the catechol-O-methyltransferase inhibitor was performed by means of coulometric detection (0.1 V). The limit of quantification was about 1 ng/ml, using a 1-ml specimen of plasma. The recovery from human plasma was greater than 88%. The mean inter-assay precision was 5.3% in the range 2.5-1000 ng/ml. Linearity of the standard curve was obtained in the concentration range 2.5-500 ng/ml. The catechol-O-methyltransferase inhibitor was stable in human plasma when stored for six months at -20 degrees C and for 24 h at room temperature. The practicability of the new method was demonstrated by the analysis of more than 400 plasma samples from a tolerance study performed in human volunteers.  相似文献   

7.
An highly sensitive and fully automated high-performance liquid chromatographic assay was developed for the determination of a novel non-benzodiazepine anxiolytic (I) [(R)-2-(methoxymethyl)-1-[(7-oxo-8-phenyl-7H-thieno[2,3-a]quinolizin+ ++- 10-yl)carbonyl]pyrrolidine] and its O-demethyl metabolite (II) in plasma, using column-switching for direct injection of plasma samples. After dilution in internal standard solution, the sample was injected onto a pre-column (17 mm x 4.6 mm) dry-packed with pellicular C18 reversed-phase material. Polar plasma components were removed by flushing the pre-column with water-acetonitrile (90:10, v/v). Retained substances, including I and II, were backflushed onto an analytical column, separated by gradient elution and detected by means of fluorescence detection (excitation, 304 nm; emission, 475 nm). After washing the analytical column and re-equilibrating the pre-column, the system was ready for the next injection. The limit of quantification for I and II was 0.25 and 0.5 ng/ml, respectively, using a 350-microliter specimen of plasma. The practicability of the new method was demonstrated by analysis of more than 300 plasma samples from a tolerance study performed with human volunteers. Owing to its high sensitivity, the method can be used to calculate pharmacokinetic parameters of compounds I and II in man after a single oral dose of about 1 mg of I.  相似文献   

8.
A novel method for the simultaneous determination of six benzodiazepines (BZDs) and four tricyclic antidepressants (TCAs) in biological fluids by HPLC with UV detection at 240 nm has been developed. After a deproteinization step biological fluids were analyzed by direct injection. SPE on Nexus cartridges was also applied. Since two compounds, namely imipramine and diazepam, were coeluting, a sequential SPE protocol has been developed. BZDs were eluted by a mixture of methanol/ACN(1:1), followed by the elution of TCAs with methanol. Separation was performed on a Kromasil C8 column (250 x 64 mm(2) id, 5 microm) using a mobile phase of 0.05 MCH3COONH4/ACN/methanol (initial composition 55:15:30 v/v/v) at a flow rate of 1.0 mL/min delivered by a gradient program within 15 min. Colchicine was used as the internal standard (4 ng/microL). The method was linear for all analytes up to 20 ng/lL, with coefficients of regression between 0.996 and 0.99996. LODs and LOQs were 0.08-1.17 and 0.28-3.91 ng/lL, respectively. Recovery was in the range of 92.8-108.7% for within-day and 91.9-109.9% for between-day assays, with RSD values lower than 10.0% for all matrices.  相似文献   

9.
A new method was developed and fully validated for the quantitation of benazepril, benazeprilat and hydrochlorothiazide in human plasma. Sample pretreatment was achieved by solid-phase extraction (SPE) using Oasis HLB cartridges. The extracts were analysed by high-performance liquid chromatography (HPLC) coupled to a single-quadrupole mass spectrometer (MS) with an electrospray ionization interface. The MS system was operated in selected ion monitoring (SIM) modes. HPLC was performed isocratically on a reversed-phase porous graphitized carbon (PGC) analytical column (2.1 x 125.0 mm i.d., particle size 5 microm). The mobile phase consisted of 55% acetonitrile in water containing 0.3% v/v formic acid and pumped at a flow rate of 0.15 ml min(-1). Chlorthalidone was used as the internal standard (IS) for quantitation. The assay was linear over a concentration range of 5.0-500 ng ml(-1) for all the compounds analysed, with a limit of quantitation of 5 ng ml(-1) for all the compounds. Quality control (QC) samples (5, 10, 100 and 500 ng ml(-1)) in five replicates from three different runs of analyses demonstrated intra-assay precision (coefficient of variation (CV) < or =14.6%), inter-assay precision (CV < or = 5.6%) and overall accuracy (relative error less than -8.0%). The method can be used to quantify benazepril, benazeprilat and hydrochlorothiazide in human plasma, covering a variety of pharmacokinetic or bioequivalence studies.  相似文献   

10.
A simple and sensitive high-performance liquid chromatographic procedure to determine spironolactone and its three major metabolites in biological specimens is described. The assay involves sequential extraction on C18 and CN solid phases, and subsequent separation on a reversed-phase column. In plasma samples, spironolactone and its metabolites were completely separated within 8 min using an isocratic mobile phase, while in urine samples a methanol gradient was necessary to achieve a good separation within 14 min. Recoveries for all analytes were greater than 80% in plasma and 72% in urine. Linear responses were observed for all compounds in the range 6.25-400 ng/ml for plasma and 31.25-2000 ng/ml for urine. The plasma and urine methods were precise (coefficient of variation from 0.8 to 12.5%) and accurate (-12.1% to 7.4% of the nominal values) for all compounds. The assay proved to be suitable for the pharmacokinetic study of spironolactone in healthy human subjects.  相似文献   

11.
A fast, sensitive and specific method is presented for the quantification of RSD921 in human plasma by liquid chromatography coupled with tandem mass spectrometry using tri-deuterated RSD921 (3d-RSD921) as an internal standard. A single-step liquid/liquid extraction was performed with diethyl ether/hexane (80 : 20, v/v) using 0.5 ml of plasma. The plasma calibration curves were linear from 0.1 to 20 ng ml(-1) (r > 0.999). Between-run precision, based on the percent relative deviation for replicate (n = 40) quality controls, was < or =7.27% (0.5 ng ml(-1)), < or =7.39% (5.0 ng ml(-1)), and < or =5.06% (20.0 ng ml(-1)). Between-run accuracies, based on the relative error, were +/-2.59%, +/-1.23% and +/-1.64% respectively. The method was developed to evaluate the pharmacokinetic profile after 15 min of intravenous stepwise-ascending infusion dose of RSD921 in 18 healthy volunteers. A dissociation study of protonated RSD921 and 3d-RSD921 by collision-induced dissociation using in-source fragmentation and tandem mass spectrometry is also presented.  相似文献   

12.
A high-performance liquid chromatographic method for the measurement of bumetanide in plasma and urine is described. Following precipitation of proteins with acetonitrile, bumetanide was extracted from plasma or urine on a 1-ml bonded-phase C18 column and eluted with acetonitrile. Piretanide dissolved in methanol was used as the internal standard. A C18 Radial Pak column and fluorescence detection (excitation wavelength 228 nm; emission wavelength 418 nm) were used. The mobile phase consisted of methanol-water-glacial acetic acid (66:34:1, v/v) delivered isocratically at a flow-rate of 1.2 ml/min. The lower limit of detection for this method was 5 ng/ml using 0.2 ml of plasma or urine. Nafcillin, but not other semi-synthetic penicillins, was the only commonly used drug that interfered with this assay. No interference from endogenous compounds was detected. For plasma, the inter-assay coefficients of variation of the method were 7.6 and 4.4% for samples containing 10 and 250 ng/ml bumetanide, respectively. The inter-assay coefficients of variation for urine samples containing 10 and 2000 ng/ml were 8.1 and 5.7%, respectively. The calibration curve was linear over the range 5-2000 ng/ml.  相似文献   

13.
A rapid, sensitive and specific high-performance liquid chromatography-electrospray ionization mass spectrometry (LC/ESI-MS) method was developed and validated for the first time to determine the concentration of lafutidine in human plasma. After the addition of diazepam (the internal standard, IS) and 1 M sodium hydroxide solution to 0.5-ml plasma sample, lafutidine was extracted from plasma with n-hexane : isopropanol (95 : 5, v/v). The organic layer was evaporated and the residue was redissolved in 200-microl mobile phase. The analyte was chromatographically separated on a prepacked Shimadzu Shim-pack VP-ODS C(18) column (250 x 2.0 mm i.d.) using a mixture of methanol-water (20 mM CH(3)COONH(4)) = 80 : 20 (v/v) as mobile phase. Detection was performed on a single quadrupole mass spectrometer using an electrospray ionization interface and the selected-ion monitoring (SIM) mode. The method showed excellent linearity (r = 0.9993) over the concentration range of 5-400 ng/ml and had good accuracy and precision. The within- and between-batch precisions were within 10% relative standard deviation. The limit of detection was 1 ng/ml. The validated LC/ESI-MS method has been successfully applied to the bioequivalence study of lafutidine in 24 healthy male Chinese volunteers.  相似文献   

14.
A high-performance liquid chromatographic method has been developed for the determination of pipotiazine in human plasma and urine. After selective extraction, pipotiazine and the internal standard (7-methoxypipotiazine) and chromatographed on a column packed with Spherosil XOA 600 (5 micrometers) using a 7:3 (v/v) mixture of diisopropyl either--isooctane (1:1, v/v + 0.2% triethylamine and diisopropyl ether--methanol (1:1, v/v) + 0.2% triethylamine + 2.6% water. The eluted compounds are measured by fluorescence detection. The sensitivity of the method was established at 0.25 ng/ml pipotiazine in plasma and 2 ng/ml pipotiazine in urine (C.V. less than 5%). The method has been successfully applied to a pharmacokinetic study following a single oral administration of 10 mg of pipotiazine.  相似文献   

15.
A method was developed for the quantitative analysis of the novel anticancer agent ES-285 (spisulosine; free base) in human, mouse, rat, and dog plasma using high-performance liquid chromatography/electrospray ionization tandem mass spectrometry in order to support pre-clinical and clinical studies with the drug. Sample preparation was carried out by protein precipitation with acetonitrile, containing isotopically labeled (d(3)) ES-285 as internal standard. Aliquots of 10 micro l of the supernatant were injected directly on to an Inertsil ODS-3 column (50 x 2.0 mm i.d., 5 micro m). Elution was carried out using methanol-10 mM ammonium formate (pH 4) in water (80 : 20, v/v) pumped at a flow-rate of 0.2 ml min(-1) with a run time of 8 min. Multiple reaction monitoring chromatograms obtained on an API365 triple-quadrupole mass spectrometer were used for quantification. The lower limit of quantitation (LLOQ) was 10 ng ml(-1) in human, mouse, rat, and dog plasma and the linear dynamic range extended to 500 ng ml(-1). A full validation of the method was performed in human plasma, and partial validations were performed in mouse, rat and dog plasma. Accuracies and precisions were <20% at the LLOQ concentration and <15% for all other concentrations in all matrices. ES-285 was stable during all steps of the assay. Thus far this method has been used successfully to analyze over 500 samples in pre-clinical trials, and will be implemented in the planned clinical phase I studies.  相似文献   

16.
A novel, sensitive and specific method for the quantitative determination of ivermectin B(1a) in animal plasma using liquid chromatography combined with positive electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) is presented. Abamectin was used as the internal standard. Extraction of the samples was performed with a deproteinization step using acetonitrile. Chromatographic separation was achieved on a Nucleosil ODS 5 microm column, using gradient elution with 0.2% (v/v) acetic acid in water and 0.2% (v/v) acetic acid in acetonitrile. The method was validated according to the requirements defined by the European Community. Calibration curves using plasma fortified between 1 and 100 ng ml(-1) showed a good linear correlation (r > or = 0.9989, goodness-of-fit coefficient < or =8.1%). The trueness at 2 and 25 ng ml(-1) (n = 6) was +4.2 and -17.1%, respectively. The trueness and between-run precision for the analysis of quality control samples at 25 ng ml(-1) was -4.0 and 11.0%, respectively (n = 16). The limit of quantification of the method was 1.0 ng ml(-1), for which the trueness and precision also fell within acceptable limits. Using a signal-to-noise ratio of 3 : 1, the limit of detection was calculated to be 0.2 ng ml(-1). The specificity was demonstrated with respect to ivermectin B(1b).The method was successfully used for the quantitative determination of ivermectin B(1a) in plasma samples from treated bovines, demonstrating the usefulness of the developed method for application in the field of pharmacokinetics.  相似文献   

17.
A novel restricted access cation exchanger with sulphonic acid groups at the internal surface was proven to be highly suitable in the sample clean up of peptides on-line coupled to HPLC-electrospray ionization (ESI)-MS. Neuropeptide Y (NPY) and several of its fragments in plasma were subjected to the sample clean-up procedure. The peptides were eluted by a step gradient from the restricted access column, applying 10 mM phosphate buffer pH 3.5 from 5 to 20% (v/v) of acetonitrile with 1 M NaCl and transferred to a Micra ODS II column (33x4.6 mm). The separation of the peptides and their fragments was performed by a linear gradient from 20 to 60% (v/v) acetonitrile in water with 0.1% formic acid and 0.01% trifluoroacetic acid in 4 min at a flow-rate of 0.75 ml/min. An integrated and completely automated system composed of sample clean up-HPLC-ESI-MS was used to analyze real life samples. The sample volumes ranged between 20 and 100 microl. Peaks due to the fragments NPY 1-36, 3-36 and 13-36 in porcine plasma were identified by ESI-MS. The limit of detection was in the 5 nmol/ml range. The total analysis required 21 min and allowed the direct injection of plasma.  相似文献   

18.
Poisonings with toxic plants may occur after abuse, intentional or accidental ingestion of plants. For diagnosis of such poisonings, multianalyte procedures were developed for detection and validated quantification of the toxic alkaloids aconitine, atropine, colchicine, coniine, cytisine, nicotine and its metabolite cotinine, physostigmine, and scopolamine in plasma using LC-APCI-MS and LC-ESI-MS/MS. After mixed-mode solid-phase extraction of 1 ml of plasma, the analytes were separated using a C8 base select separation column and gradient elution (acetonitrile/ammonium formate, pH 3.5). Calibration curves were used for quantification with cotinine-d(3), benzoylecgonine-d(3), and trimipramine-d(3) as internal standards. The method was validated according to international guidelines. Both assays were selective for the tested compounds. No instability was observed after repeated freezing and thawing or in processed samples. The assays were linear for coniine, cytisine, nicotine and its metabolite cotinine, from 50 to 1000 ng/ml using LC-APCI-MS and 1 to 1000 ng/ml using LC-ESI-MS/MS, respectively, and for aconitine, atropine, colchicine, physostigmine, and scopolamine from 5 to 100 ng/ml for LC-APCI-MS and 0.1 to 100 ng/ml for LC-ESI-MS/MS, respectively. Accuracy ranged from -38.6 to 14.0%, repeatability from 2.5 to 13.5%, and intermediate precision from 4.8 to 13.5% using LC-APCI-MS and from -38.3 to 8.3% for accuracy, from 3.5 to 13.8%, for repeatability, and from 4.3 to 14.7% for intermediate precision using LC-ESI-MS/MS. The lower limit of quantification was fixed at the lowest calibrator in the linearity experiments. With the exception of the greater sensitivity and higher identification power, LC-ESI-MS/MS had no major advantages over LC-APCI-MS. Both presented assays were applicable for sensitive detection of all studied analytes and for accurate and precise quantification, with the exception of the rather volatile nicotine. The applicability of the assays was demonstrated by analysis of plasma samples from suspected poisoning cases.  相似文献   

19.
A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed and validated to simultaneously determine gliclazide and metformin in human plasma using huperzine A as the internal standard (IS). After acetonitrile-induced protein precipitation of the plasma samples, gliclazide, metformin and the IS were subjected to LC/MS/MS analysis using electro-spray ionization (ESI). Chromatographic separation was performed on a Hypersil BDS C18 column (50 mm x 2.1 mm, i.d., 3 microm). The method had a chromatographic running time of 2.0 min and linear calibration curves over the concentration ranges of 10-10,000 ng ml(-1) for gliclazide and 7.8-4678.9 ng ml(-1) for metformin. The recoveries of the method were found to be 71-104%. The lower limits of quantification (LOQ) of the method were 10.0 and 7.8 ng ml(-1) for gliclazide and metformin, respectively. The intra- and interday precision was less than 15% for all quality control samples at concentrations of 100, 500, and 2000 ng ml(-1). The validated LC/MS/MS method has been used to study bioequivalence in healthy volunteers. These results indicate that the method was efficient with a very short running time (2.0 min) for metformin and gliclazide compared to the methods reported in the literature. The presented method had acceptable accuracy, precision and sensitivity and was used in clinical bioequivalence study.  相似文献   

20.
林强  杨超  李美丽  王佳  侯瀚然  邵兵  牛宇敏 《色谱》2023,41(3):274-280
人体生物基质中麻痹性贝类毒素的检测对其引起的食物中毒诊断和救治具有重要意义。研究建立了超高效液相色谱-串联质谱法测定血浆、尿液中14种麻痹性贝类毒素的分析方法。实验比较了不同固相萃取柱的影响,优化了前处理条件和色谱条件,血浆样品采用0.2 mL水、0.4 mL甲醇、0.6 mL乙腈提取后直接上机测定,尿液样品采用0.2 mL水、0.4 mL甲醇、0.6 mL乙腈提取,聚酰胺(PA)固相萃取柱净化后上机测定。采用Poroshell 120 HILIC-Z色谱柱(100 mm×2.1 mm,2.7μm)对14种贝类毒素进行分离,流动相为含0.1%(v/v)甲酸的5 mmoL/L甲酸铵缓冲溶液和0.1%(v/v)甲酸乙腈溶液,流速为0.50 mL/min。在电喷雾模式(ESI)下进行正负离子扫描,采用多反应监测(MRM)模式检测,外标法定量。结果表明,对于血浆和尿液样品,14种贝类毒素分别在0.24~84.06 ng/mL范围内线性关系良好,相关系数均大于0.995。尿液检测的定量限为4.80~34.40 ng/mL,血浆检测的定量限为1.68~12.04 ng/mL。尿液和血浆样品在1、2和10倍定量限加标水平下平均回收率为70.4%~123.4%,日内精密度为2.3%~19.1%,日间精密度为4.0%~16.2%。应用建立的方法对腹腔注射14种贝类毒素小鼠血浆和尿液进行测定,20份血浆样本中检出含量分别为19.40~55.60μg/L和8.75~13.86μg/L。该方法操作简便,样品取样量少,方法灵敏度高,适用于血浆和尿液中麻痹性贝类毒素的快速检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号