首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study the lower analytical limits of solid sampling electrothermal atomization atomic absorption spectrometry (SS-ETAAS) were characterized by means of blank measurements and – for the first time – by means of the calibration curve method, where a calibration near the range of these limits (limit of decision, detection and quantification) was performed. The limit of decision as derived from blank measurements was calculated according to the 3σ-criterion to be 0.003 and 0.019 ng for Cd and Pb, respectively. For Pb and Cd a roughly threefold increase of these limits was observed when the calibration method according to DIN 32 645 was applied. When solid reference material was used, only a slight increase could be observed. The analytical limits were 2 to 20 times lower than reported for sample decomposition methods. The blank measurement and conventional calibration curve method, however, do not account for factors relating to solid sampling such as sample mass and matrix. Therefore, the calibration curve model was applied to data derived from comparisons between direct solid sampling ETAAS and a compound reference method (ETAAS following sample homogenization and digestion). The observed analytical limits were not found to be substantially increased if enough samples with low element contents were available for calibration. Coupling of the calibration curve model with the comparison of methods included real test samples and thus the relevant maximum sample mass and analyte content in the range of the lower analytical limits. As validation procedures frequently include comparisons of methods, the present approach might prove to be of some general interest for the characterization of analytical quality in rapid methods.  相似文献   

2.
In the present study the lower analytical limits of solid sampling electrothermal atomization atomic absorption spectrometry (SS-ETAAS) were characterized by means of blank measurements and--for the first time--by means of the calibration curve method, where a calibration near the range of these limits (limit of decision, detection and quantification) was performed. The limit of decision as derived from blank measurements was calculated according to the 3sigma-criterion to be 0.003 and 0.019 ng for Cd and Pb, respectively. For Pb and Cd a roughly three-fold increase of these limits was observed when the calibration method according to DIN 32 645 was applied. When solid reference material was used, only a slight increase could be observed. The analytical limits were 2 to 20 times lower than reported for sample decomposition methods. The blank measurement and conventional calibration curve method, however, do not account for factors relating to solid sampling such as sample mass and matrix. Therefore, the calibration curve model was applied to data derived from comparisons between direct solid sampling ETAAS and a compound reference method (ETAAS following sample homogenization and digestion). The observed analytical limits were not found to be substantially increased if enough samples with low element contents were available for calibration. Coupling of the calibration curve model with the comparison of methods included real test samples and thus the relevant maximum sample mass and analyte content in the range of the lower analytical limits. As validation procedures frequently include comparisons of methods, the present approach might prove to be of some general interest for the characterization of analytical quality in rapid methods.  相似文献   

3.
A procedure has been proposed for the direct ICP-AES analysis of solid copper samples using spark sampling. Calibration curves have been obtained using multi-element reference solutions of analytes (MES). The internal standards are spectral lines of copper with the energy parameters (excitation and ionization potentials) similar to those of analytes. Standard Reference Material (SRM) of copper have been used for the estimation of performance characteristics. The absence of significant differences between the found and certified concentrations of analytes has been shown. The developed procedure of ICP-AES analysis of solid copper samples with spark sampling and calibration using MES provides the determination of up to 14 elements: Ag, As, Au, Cd, Fe, Mn, Ni, P, Pb, Pt, Sb, Se, Sn, Te, and Zn in the concentration range from n × 10?3 to n × 10?1 wt %.  相似文献   

4.
In this study we have validated a newly developed multi-element isotope dilution (ID) ICPMS method for the simultaneous analysis of up to 12 trace elements in geological samples. By evaluating the analytical uncertainty of individual components using certified reference materials we have quantified the overall analytical uncertainty of the multi-element ID ICPMS method at 1–2%. Individual components include sampling/weighing, purity of reagents, purity of spike solutions, calibration of spikes, determination of isotopic ratios, instrumental sources of error, correction of mass discrimination effect, values of constants, and operator bias. We have used the ID-determined trace elements for internal standardization to improve indirectly the analysis of 14 other (mainly mono-isotopic trace elements) by external calibration. The overall analytical uncertainty for those data is about 2–3%.In addition, we have analyzed USGS and MPI-DING geological reference materials (BHVO-1, BHVO-2, KL2-G, ML3B-G) to quantify the overall bias of the measurement procedure. Trace element analysis of geological reference materials yielded results that agree mostly within about 2–3% relative to the reference values. Since these results match the conclusions obtained by the investigation of the overall analytical uncertainty, we take this as a measure for the validity of multi-element ID ICPMS.  相似文献   

5.
A method to prepare milk powder, bovine liver and bovine muscle samples for analysis by electrothermal atomic absorption spectrometry (ETAAS) is proposed. Samples are mixed with a small amount of tetramethylammonium hydroxide (TMAH) and a stable and homogeneous slurry is produced in ca. 2 h with heating at 60–70 °C. After such sample preparation and dilution with water, trace elements are determined in certified reference materials. Pyrolysis and atomisation temperatures are optimised for each element, and several modifiers are investigated. External calibration is used for every analyte. Limits of detection (LODs), precision and accuracy are reported for Cd, Pb, Ni, Cr, Cu and Ag and compared with those obtained after conventional acid digestion. The main advantages of the proposed method are the simplicity of sample preparation and the longer lifetime of the graphite tube.  相似文献   

6.
Analytical procedure for the determination of As, Cd, Cu, Ni, Co and Cr in marine biota samples using solid sampling high-resolution continuum source atomic absorption spectrometry (HR CS AAS) and accelerated fast temperature programmes has been developed. Calibration technique based on the use of solid certified reference materials similar to the nature of the analysed sample and statistics of regression analysis were applied. A validation approach in line with the requirements of ISO 17025 standard and Eurachem guidelines was followed. Accordingly, blanks, selectivity, calibration, linearity, working range, trueness, repeatability and reproducibility, limits of detection and quantification and expanded uncertainty for all investigated elements were assessed. The major contributors to the combined uncertainty of the analyte mass fractions were found to be the homogeneity of the samples and the microbalance precision. Traceability to the SI system of units of the obtained with the proposed analytical procedure results was also demonstrated. The potential of the proposed analytical procedure based on solid sampling HR CS AAS technique was demonstrated by direct analysis of marine reference biota samples. Overall, the use of solid sampling HR CS AAS permits obtaining significant advantages for the determination of selected trace elements in marine biota samples, such as straightforward calibration, a high sample throughput, sufficient precision, a suitable limit of detection and reduced risk of analyte loss and contamination.  相似文献   

7.
Gupta JG  Bouvier JL 《Talanta》1995,42(2):269-281
A method was developed for direct determination of minor and trace amounts of Cr, Mn, Cu, Ni, Co, Li, Pb, Cd, Bi, Sb, Be and Ag in silicate rock, lake and stream sediments using a microwave oven dissolution method and a multi-element graphite furnace atomic absorption spectrometer equipped with a Zeeman-effect background correction device. The measurement technique was also suitable for direct determination of trace and ultra-trace amounts of these elements in drinking and seawater samples. A rock or sediment sample was brought into solution in a Teflon vessel by heating in a microwave oven with a mixture of hydrofluoric acid and aqua regia, followed by a further heating with a mixture of boric acid and ethylenediaminetetraacetic acid. The specified elements were directly determined in a group of four elements in one firing and eight elements in two firings from this solution or from a diluted solution using the optimum operating parameters developed in this work. The method, tested with 23 international reference rocks and sediments and seven international quality control and reference water samples, showed good to excellent agreement with the recommended values.  相似文献   

8.
Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new analytical developments and possible applications of ICP-MS and LA-ICP-MS for the quantitative determination of trace elements and in surface analysis for materials science.  相似文献   

9.
In this work, we propose a method to determine trace amounts of Cd in human whole blood samples by electrothermal atomic absorption spectrometry (ETAAS) with the combined chemical modifier including magnesium chloride and sodium hydroxide. Prior to the ETAAS analysis, dissolution of the blood samples is accomplished using a HNO3-HClO4double closed-vessel microwave digestion technique followed by drying of the dissolved blood samples by means of an infrared lamp. In using this approach, a MgCl2 chemical modifier is added to the digested samples, then they are injected into the graphite furnace for detecting the Cd level via atomic absorption spectrometer. Besides we used a NaOH chemical modifier, which removed the matrix major elements through prior ashing at 1200 ° C for 30 s, and the Cd is subsequently volatilized at 2200 °C and determined by AAS. However, the proposed method can be employed to determine the of Cd level in whole blood samples by the calibration technique and the standard-additions method. Its validity is confirmed with two certified reference whole blood materials (Seronorm Trace Elements Whole Blood Batch no. 205052 and Batch no. 203056). By using 10 μL injections, a detection limit of 0.052 ng mL?1 is achieved.  相似文献   

10.
Direct solid sampling graphite furnace AAS (SS-GF-AAS) provides an advantageous alternative to the conventional AAS which requires wet digestion of the samples. This method is suitable for trace element determination in calcium fluoride and other fluoride-containing samples. Matrix effects were studied by using calibration standards, certified reference materials with different matrices and by means of three-dimensional calibration. 3D calibration is suitable for selection of calibration samples for more reliable analyses. Cu, Pb, Cd, Zn, and Fe were determined by means of calibration with variation of sample weight using certified reference materials and suitable fluoride-containing calibration samples. Received: 25 July 1997 / Revised: 15 December 1997 / Accepted: 20 December 1997  相似文献   

11.
Direct solid sampling graphite furnace AAS (SS-GF-AAS) provides an advantageous alternative to the conventional AAS which requires wet digestion of the samples. This method is suitable for trace element determination in calcium fluoride and other fluoride-containing samples. Matrix effects were studied by using calibration standards, certified reference materials with different matrices and by means of three-dimensional calibration. 3D calibration is suitable for selection of calibration samples for more reliable analyses. Cu, Pb, Cd, Zn, and Fe were determined by means of calibration with variation of sample weight using certified reference materials and suitable fluoride-containing calibration samples. Received: 25 July 1997 / Revised: 15 December 1997 / Accepted: 20 December 1997  相似文献   

12.
A new coherent forward scattering spectrometer for simultaneous multi-element determination on up to 20 atomic lines has been constructed and evaluated. The apparatus consists of a continuum primary source, calcite Glan-Taylor polarizers equipped with a laboratory-designed chromatic correction for the wavelength range 214–766 nm, an electrothermal atomizer with magnet and autosampler and a laboratory-constructed wavelength modulated polychromator with medium resolving power. Light intensities of up to 20 resonance lines in the wavelength range of 214–500 nm are transferred from the focal plane to an array of 20 miniature photomultipliers by optical fiber-bundles. The instrumentation is controlled by a computer. Owing to modular construction the graphite furnace can be exchanged by a flame. Simultaneous multi-element determinations of Ag, Al, Ca, Cd, Co, Cr, Cu, Fe, K, Mn, Na, Ni, Pb, Sr, Tl and Zn are carried out. The received analytical curves cover 1.5–2.5 orders of magnitude per atomic line, which is in the same order as with multi-element measurements with electrothermal atomic absorption spectrometry (ETAAS). Further working range expansions are demonstrated with determining on resonance lines with different strengths. The detection limits for the strongest resonance line of most elements are in the μg l−1-range and are one order of magnitude higher than those measured with commercially available ETAAS instrumentation when determining four elements simultaneously. The crossed-to-open extinction ratio of the chromatically corrected Glan-Taylor polarizers is determined to approximately 2.5×10−5 under installed conditions with the graphite furnace and its two windows in between. The spectral transmissions of these polarizers and the optical fiber-bundles are measured with a photometer. It shows a steep decay for wavelengths below 220 nm.  相似文献   

13.
Systematic errors observed when using flame atomic absorption spectrometry (FAAS) and electrothermal atomic spectrometry (ETAAS) for the analysis of biological solid materials (seafood products) were evaluated. The effect of the sample pre-treatment method (microwave-assisted acid digestion, ultrasound-assisted acid leaching and slurry sampling) as well as the number of times that a certain pre-treatment process is repeated, were two factors evaluated. They give information about the effect of the sample pre-treatment on the uncertainty in the analysis. In addition, the number of measurements (i.e., number of times that an acid digest, an acid leachate or aqueous slurry are analysed) and the calibration technique used (aqueous calibration method or standard addition technique) were other two variables taken into account. This last factor gives information about the effect of the calibration on the results, while the replicate measurements showed the repeatability. A fifth variable named as sample matrix tests the influence of the matrix sample on the systematic error through the use of different reference materials. This variable allows the study of the effect of the trace element concentrations on the uncertainty because the trace elements contents are different in each reference material. Experimental design and principal component analysis approaches were used as chemometric tools. It has been found that the use of the slurry sampling technique in ETAAS and FAAS and the determination of high element concentrations by ETAAS have led to poor precision.  相似文献   

14.
A theoretical analysis is made of the effect of analytical line broadening and of non-absorbable radiation in the light source on the shape of concentration curves in Zeeman graphite furnace atomic absorption spectrometry. These results have been used in a systematic study of the effect of spectrometer slit width and hollow-cathode lamp (HCL) current on linearization of calibration graphs for 11 elements: Ag, Au, Bi, Cd, Co, Cu, Fe, Mn, Ni, Pb, and Sb. The effectiveness of linearization throughout the analytical range covered was estimated experimentally on series of 25–30 solutions. Three solutions in each series were used as standards for constructing the calibration graph, the others serving to evaluate the linearization effectiveness. Increasing the slit width and decreasing the HCL current compared to the standard measurement conditions have permitted us to reach a sufficiently high effectiveness of linearization for all the elements studied, with the exception of Ni. The maximum deviation of experimental points from the linear graph under optimum conditions does not exceed 6%. The effect of the Δ parameter used in the computational algorithm on linearization effectiveness is investigated.  相似文献   

15.
Mierzwa J  Sun YC  Chung YT  Yang MH 《Talanta》1998,47(5):35-1270
The comparative determination of barium, copper, iron, lead and zinc in tea leaf samples by two atomic spectrometric techniques is reported. At first, slurry sampling electrothermal atomization atomic absorption spectrometry (ETAAS) was applied. The results of Ba and Pb determination were calculated using the method of standard additions, and results of Cu, Fe and Zn from the calibration graphs based on aqueous standards. These results were compared with the results obtained after microwave-assisted wet (nitric+hydrochloric+hydrofluoric acids) digestion in closed vessels followed by inductively coupled plasma-atomic emission spectrometric (ICP-AES) determination with the calibration by means of aqueous standards. The exception was lead determined after a wet digestion procedure by ETAAS. The accuracy of the studied methods was checked by the use of the certified reference material Tea GBW-07605. The recoveries of the analytes varied in the range from 91 to 99% for slurry sampling ETAAS, and from 92.5 to 102% for liquid sampling ICP-AES. The advantages of slurry sampling ETAAS method are simplicity of sample preparation and very good sensitivity. Slurry sampling ETAAS method is relatively fast but if several elements must be determined in one sample, the time of the whole microwave-assisted digestion procedure and ICP-AES determination will be shorter. However, worse detection limits of ICP-AES must also be taken into the consideration in a case of some analytes.  相似文献   

16.
A laboratory constructed molybdenum tube atomizer was used for direct determination of trace cadmium in drug samples by the electrothermal atomic absorption spectrometric (ETAAS) method. An ultrasonic agitation method for a solution including the sample powder was used. A calibration curve was constructed with a cadmium standard solution including matrix. To eliminate interference from other matrix elements, a chemical modifier thiourea, was used. The detection limit were 17 pg ml(-1) (3 S/N), and the RSD of the direct analysis was 5-17%. The results for cadmium in the four drug samples analysed by the direct ETAAS method matched well with those obtained with nitric acid digested samples. The recovery of added cadmium was 103-106%. An accurate method is elaborated for the determination of cadmium in drug samples by direct ETAAS techniques. The merits of this method are rapid calibration, simplicity, fast analysis, and low cost.  相似文献   

17.
A method has been developed for the determination of cobalt, copper and manganese in green coffee using direct solid sampling electrothermal atomic absorption spectrometry (SS-ET AAS). The motivation for the study was that only a few elements might be suitable to determine the origin of green coffee so that the multi-element techniques usually applied for this purpose might not be necessary. The three elements have been chosen as test elements as they were found to be significant in previous investigations. A number of botanical certified reference materials (CRM) and pre-analyzed samples of green coffee have been used for method validation, and inductively coupled plasma optical emission spectrometry (ICP OES) after microwave-assisted acid digestion of the samples as reference method. Calibration against aqueous standards could be used for the determination of Mn and Co by SS-ET AAS, but calibration against solid CRM was necessary for the determination of Cu. No significant difference was found between the results obtained with the proposed method and certified or independently determined values. The limits of detection for Mn, Cu and Co were 0.012, 0.006 and 0.004 μg g−1 using SS-ET AAS and 0.015, 0.13 and 0.10 μg g−1 using ICP OES. Seven samples of Brazilian green coffee have been analyzed, and there was no significant difference between the values obtained with SS-ET AAS and ICP OES for Mn and Cu. ICP OES could not be used as a reference method for Co, as essentially all values were below the limit of quantification of this technique.  相似文献   

18.
Gupta JG 《Talanta》1993,40(6):791-797
A new method has been developed for rapid determination of mug/g and ng/g amounts of noble metals in silicate rocks, ores and metallurgical samples by attacking with hydrofluoric acid and aqua regia, preconcentration by ion-exchange chromatography and measuring in a simultaneous multi-element graphite furnace atomic absorption spectrometer equipped with a polarized Zeeman background correction device which eliminated interferences from any incompletely separated common elements. The method was tested for Ru, Rh, Pt, Ir, Pd, Ag and Au with three Canadian certified reference materials, and then applied to the determination of ng/g amounts of these elements in four new Canadian candidate reference materials.  相似文献   

19.
A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for 35Cl+ to more than 6 × 105 cps for 238U+ for 1 μg of trace element per gram of coal sample. Detection limits vary from 450 ng g−1 for chlorine and 18 ng g−1 for sulfur to 9.5 pg g−1 for mercury and 0.3 pg g−1 for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis. Figure LA-ICP-IDMS allows direct multi-element determination in powdered coal samples  相似文献   

20.
For simultaneous determination in conditions with spectral overlap and variation of matrix effects, coupling of the generalized standard addition method (GSAM) with the multivariate nonlinear method of radial basis function–partial least squares (RBF–PLS) was proposed. The nonlinearity caused by the GSAM used to correct matrix effects was studied, and principal component analysis was proposed for identifying it. In the method introduced, the whole sensor range can be used without the collinearity problem encountered in the application of GSAM with classical least squares (CLS), and calibration can be made for each analyte, separately. The introduced method was applied to determine amlodipine and atorvastatin in urine samples. The mean of the percent recoveries was between 95 and 101.12. The percent relative standard deviation values of the method were in most cases below 5%. The results of GSAM–RBF–PLS were compared with those obtained by GSAM–CLS and GSAM–PLS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号