首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Degradation of cellulose in historic paper by iron gall ink is a synergistic process of both, acid hydrolysis caused by acidic ink ingredients and oxidation catalyzed by free iron and/or copper ions. The interplay of both reactions was studied according to the CCOA method on historic paper samples. Only minute amounts (few mg) of the samples were required to obtain profiles of naturally present and oxidatively introduced carbonyl groups, which was done by group-selective fluorescence labeling in combination with determination of the molecular weight distribution by GPC-MALLS. In the present study naturally occurring degradation pathways in historic sample papers have been investigated. Different extents of oxidatitive degradation were shown for paper with and without ink. A typical pattern of the molecular weight distribution in naturally aged papers was identified, the peculiar feature being a distinctive shoulder in the region of low molecular weight, roughly between 25,000 and 5,000 g/mol corresponding to a DP between 150 and 30. This pattern was a typical attribute of degraded natural samples: any artificial aging procedures aimed at modeling natural aging processes must thus attempt to reproduce this feature. Although the historic samples had been more severely oxidized than model papers, the inhibition of further oxidation and hydrolysis by the calcium phytate/hydrogen carbonate treatment was evident and could be proven for the first time on the molecular level. Also on plain paper without ink application the oxidation was suppressed and the molecular weight was stabilized on a high level.  相似文献   

2.
Summary: Copper corrosion on paper works of art is commonly explained by copper ion-catalysed cellulose oxidation, usually reflected by discoloration of pigment and surrounding paper as well as by loss of mechanical strength. In this study, model paper and historic paper samples, both containing copper pigments, were compared using fluorescence labelling of carbonyl groups and subsequent GPC analysis. The historic paper samples did not show any typical sign of copper pigment induced discoloration, but high brittleness. In artificially copper-corroded paper samples the distribution of carbonyl groups in combination with the molecular weight distribution of cellulose clearly indicated the occurrence of oxidative processes. In contrast, only insignificant oxidative damage was detected in the case of the paper fragments from an original work of art, a codex from the 15th century. Here, mostly degradation by hydrolytic action was revealed. There was no introduction of carbonyl groups into the bulk section of the molecular weight distribution, and the gain in new carbonyl groups corresponded to the number of reducing end groups newly generated by hydrolysis.  相似文献   

3.
4.
Iron gall ink was the most widely used writing ink for paper from the Middle Ages to the twentieth century. Unfortunately, the ink ingredients contain corrosive transition metal ions and acids that cause severe damage to the paper carrier. New or improved paper conservation methods for iron gall ink stabilization are constantly sought. The aim of the study was evaluation of a recently proposed stabilization treatment, adapted to lower relative humidity, applied to various model and historical paper samples containing iron gall ink. The effect of stabilization treatment on paper samples during artificial thermal aging was followed by the determination of the molecular weight distribution by size exclusion chromatography and colorimetry. Migration of iron and copper compounds from the ink lines was monitored by laser ablation inductively coupled plasma mass spectrometry. The results demonstrate that effective stabilization of iron gall ink-containing paper can be successfully achieved by interleaving with papers impregnated with the antioxidant tetrabutylammonium bromide and alkaline buffer under experimental conditions. Negative side effects of the stabilization treatment, such as migration of iron or copper ions from the ink lines and changes of color after the treatment and after accelerated thermal degradation, were limited, proving that the proposed stabilization treatment can be considered for future use by conservators.  相似文献   

5.
Deterioration of historical papers is caused by several processes, such as acid hydrolysis or autoxidation due to the presence of metal ions contained in inks or pigments. Both processes can be studied by fluorescence labeling of carbonyl and carboxyl groups in combination with GPC-MALLS. This technique allows to determine not only the extent of hydrolysis, but also the concentration of oxidized functionalities within very low sample amounts.The thermally induced aging of rag papers with lines of copper pigment has been investigated, simulating green or blue copper pigments in historic wall papers. The cellulose parts with pigment coverage and adjacent pigment-free regions were analyzed separately and compared to paper parts not affected by metal ions. The cellulose underneath and close to the applied pigment strokes was severely affected. Although there was no difference in the molecular weight distribution, distinct differences in the carbonyl and carboxyl content were observed. Copper ion migration is suggested to be one possible explanation for this observation as a strong correlation between distribution of copper ions and carbonyl groups was found. For the first time, a detailed examination of cellulose damage in spatial proximity to metal-containing pigment lines is thus presented.  相似文献   

6.
Iron-gall inks consist of a mixture of vitriols (sulphates of certain metals), gall nut extracts and arabic gum. The association of the iron(II) sulphate present in vitriols, and the gallic acids present in the gall nut extracts induces, after exposure to oxygen, the formation of dark coloured compounds of ink. In addition to iron, this kind of inks contains other metals, such as copper, zinc, and nickel. Among them, copper could be considered the most important because, owing to its catalytic ability, it can be involved in the processes concerning formation and stability of iron complexes, which are responsible for the ink dark colour. For this purpose, four different iron-gall inks containing increasing amounts of copper sulphate were prepared according to a traditional receipt and applied on paper supports. The ink-stained paper specimens were subjected to an intense analytical program to investigate their chemical and physical modifications after artificial ageing (both temperature/humidity and ultraviolet light ageing). The role of copper in the iron-gall inks was evaluated using optical microscopy, colorimetric measurements, X-ray fluorescence (XRF), X-ray diffraction analysis (XRD), scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM–EDX) and Fourier transform infrared spectroscopy (FTIR). For the evaluation of the oxidation state of iron and copper, X-ray absorption spectroscopy (XANES) was used. All results indicate that the presence of copper in iron-gall ink causes colour variation, affects the migratory behaviour of iron in the paper, increases the formation of secondary products particularly when ageing process based on temperature/humidity variations is considered.  相似文献   

7.
Iron gall ink, also referred to as iron gallotannate ink, is one of the most important inks in the history of western civilisation, and was in widespread use from the middle ages until the 20th century. Unfortunately, iron ions and acids present in these inks induce enhanced degradation of paper, thus severely damaging numerous historical artefacts. Yet, when examining documents, it is frequently observed that not all materials containing iron gall ink are suffering from ink corrosion. While some are completely destroyed, others may be in excellent condition even centuries after their creation. In order to establish the main properties of materials, common to severely degraded documents, the effects of the type and quantity of metal ions in the ink, as determined by in-air PIXE method, pH of the ink on paper, grammage of paper, its absorptivity and the width of ink lines were evaluated against the extent of corrosion. Using multiple linear regression analysis, a correlation has been obtained between the width of the applied ink lines, pH, grammage of paper and the extent of ink corrosion. Based on these factors, which can be acquired non-destructively from most historical documents, it is therefore possible to predict the stability of historical iron gall ink containing paper.  相似文献   

8.
The influence of some polyvalent cations on the thermostability of cellulose was investigated using both conventional TG analysis and quasi-isothermal treatment at elevated temperatures. It was established that ions of copper, cobalt and iron absorbed in the cellulose fibre surface accelerated the thermal decomposition of cellulose chain molecules, the temperature of the main decomposition decreasing very significantly. Lewis acid type additives (such as ZnCl2) promote the hydrolytic decomposition and hence the temperature of the post-decomposition increases compared with that of the blank sample. Ions of alkaline earth metals (Ca and Ba) do not affect the thermal behaviour of cellulose fibres. From the results of the quasi-isothermal experiments the apparent energy of activation for the decomposition of cellulose in the presence of metal ions was calculated.  相似文献   

9.
Summary. The present paper examines oxidative degradation of cellulose catalyzed by presence of Cu1+and Cu2+ ions in the context of historic paper conservation treatments. Aqueous treatments of degraded papers further spread transition metal ions, such as copper, across the fibre matrix, and therefore augment the detrimental effect of these ions. In the paper industry, the inhibiting effects of magnesium ions on metal-catalyzed degradation of cellulose contaminated with metal impurities have been observed. Also, magnesium compounds dissolved in alcoholic or aqueous solutions are generally used in paper conservation as deacidification agents. Paper samples with artificially produced copper corrosion served as mock-ups for examination and comparison of different treatments which focused on the inhibiting effect of magnesium and antioxidants. Analytical examination of molecular weight distribution, carbonyl content, carboxyl content, and surface pH was performed. Results show an inhibiting effect of magnesium on copper-catalyzed cellulose degradation, although less pronounced than expected.  相似文献   

10.
11.
蔡瑜  曹成喜  卓先义  李红根  樊柳荫 《色谱》2020,38(10):1249-1255
可疑文件中墨水笔迹的相对时间鉴定对法庭科学、刑事案件的侦破和历史文献的整理都具有重要意义。该文建立了一种识别墨迹相对年代的毛细管电泳(CE)新方法。采用络合剂邻菲罗啉(1,10-phen)和反式-1,2-环己二胺四乙酸(CDTA)分别与Fe(Ⅱ)和Fe(Ⅲ)络合,然后用CE测定Fe(Ⅱ)和Fe(Ⅲ)的峰面积,通过比较从可疑笔迹中提取的Fe(Ⅱ)和Fe(Ⅲ)的峰面积比与从整个文档中提取出的Fe(Ⅱ)和Fe(Ⅲ)的峰面积比,判断整篇文字是否同时书写。实验首先对两种络合剂与两种价态铁离子的特异性络合进行了研究,结果表明1,10-phen与Fe(Ⅱ)、CDTA与Fe(Ⅲ)具有特异性络合。初步研究还表明:由于商用墨水pH值较低,墨水中的Fe(Ⅱ)在墨水瓶中比较稳定,因此Fe(Ⅱ)在墨水瓶中的氧化可以忽略不计;但当墨水书写在纸张上时,墨水中的硫酸会逐渐被纸张的纤维素所消耗,从而导致Fe(Ⅱ)在纸张中被逐渐氧化;在老化过程中Fe(Ⅱ)和Fe(Ⅲ)的峰面积比发生了变化,书写的时间越长,Fe(Ⅱ)和Fe(Ⅲ)的峰面积比就越小。该技术的成功应用依赖于找到一种合适的提取笔迹墨水的方法和CE分离测定Fe(Ⅱ)和Fe(Ⅲ)的方法。样品前处理程序如下:剪取1 cm长的墨水迹线,剪碎后放入2 mL的EP管中,加入0.5 mL 5 mmol/L的1,10-phen萃取1 min,再加入0.5 mL 20 mmol/L的CDTA振荡10 min,10000 r/min离心15 min,取上清液进行CE分离检测。CE条件如下:熔融石英毛细管(40.2 cm(有效长度30 cm)×75 μm i.d.),100 mmol/L硼酸-硼砂缓冲溶液(pH 9.2),压力上样(1.379 kPa,上样时间5 s),分离电压20 kV,检测波长254 nm,温度控制在25℃。最后,对两种不同的墨水进行了测定,以评价所建方法的适用性,结果表明所建方法对于鉴别可疑文件中真伪笔迹的相对年代具有重要的指导意义。  相似文献   

12.
Degradation of cellulose under alkaline conditions is involved either involuntarily or deliberately in many different cellulose processing steps, such as pulping, bleaching, or aging within the viscose process, and the underlying chemistry has been the topic of numerous studies. When it comes to aging under alkaline conditions—either natural or accelerated (artificial)—the degradation processes are by far less investigated and understood. A prominent example of moderately alkaline cellulosic material is deacidified book paper from libraries which had undergone a mass-deacidification treatment. We studied their aging behavior under accelerated conditions in comparison to non-deacidified duplicates in order to better understand how the alkaline reserve, which was introduced by the deacidification treatment, affects the stability of the books on the long run. GPC analysis of cellulose and determination of carbonyl functionalities were performed, which were critical parameters to achieve a deeper insight into hydrolytic and oxidative changes of cellulose structure upon deacidification treatment and subsequent aging. Also, model book papers impregnated with different amounts of alkaline reserve were used to support the findings from the original book samples. Hydrolytic degradation rates of the original book papers were significantly reduced after mass deacidification compared to the non-deacidified duplicates. The beneficial effect of mass deacidification on cellulose stability was found to be strongly related to the amount of alkaline reserve deposited, independent of varying parameters of book papers. Although some indication of alkali-induced β-elimination was found (a minor decrease of the along-chain carbonyl content in the original deacidified book papers during aging), it did not occur to an extent that significantly influenced the molar mass of cellulose. The beneficial effect of retarded hydrolytic degradation by mass deacidification thus clearly outweighed possible negative alkalinity effects of the deposited alkaline reserve.  相似文献   

13.
Iron gall inks are characterised by high contents of acids and transition metals, promoting degradation of cellulose due to hydrolysis and oxidation, respectively. Their chemical interaction with the environment is not well understood, especially in view of emissions of degradation products which could lead to spread of degradation processes.In order to study the emissions, we employed gas chromatography/mass spectrometry following headspace micro-extraction, and liquid chromatography following hydroxyl radical scavenging with appropriate probes. We also studied chemiluminescence of cellulose affected by ink degradation.We show that while the emissions of organic volatile degradation compounds by inks are less intense than those of surrounding paper, ink does promote the degradation of cellulose across big distances (from object to object). We were able to link this to emission of reactive oxygen species, probably hydrogen peroxide. Its emission from ink is considerably more intensive than from paper.  相似文献   

14.
This paper investigates the behavior of paper strips containing iron-gall inks prepared with tannins from different sources, subjected to natural and thermally-induced aging. Results indicate that inks containing initial concentrations of ferrous sulphate ranging from 0.2 to 10.0 g are amenable to treatment with calcium phytate, and thata good correlation exists between the recovery of excess iron and the initial concentration. Infrared spectra showed an absorption band at 1,750 cm?1, typical of esther, solely in the samples prepared with a condensed tannin. The condensed nature of this tannin produced a different oxidation pattern, with iron removal inferior to those observed from inks produced with hydrolisable tannins. When tannic acid was used ferrous iron removals ranged from 0.050 to 1.800 g, decreasing to 0.5 g in the presence of copper; the same behavior was observed for the remaining hydrolisable tannins, with a lower recovery from the condensed tannin. The adopted natural aging procedure released a higher amount of ferrous iron compared to ASTM thermal aging. This was probably due to the marked effect of humidity, not considered in the thermal procedure. A series of archaeometric possibilities were used to help elucidate the degradation of cellulose strips impregnated with iron-gall inks.   相似文献   

15.
Deferasirox is an orally active, lipophilic iron chelating drug used on thousands of patients worldwide for the treatment of transfusional iron overload. The essential transition metals iron and copper are the primary catalysts of reactive oxygen species and oxidative damage in biological systems. The redox effects of deferasirox and its metal complexes with iron, copper and other metals are of pharmacological, toxicological, biological and physiological importance. Several molecular model systems of oxidative damage caused by iron and copper catalysis including the oxidation of ascorbic acid, the peroxidation of linoleic acid micelles and the oxidation of dihydropyridine have been investigated in the presence of deferasirox using UV-visible and NMR spectroscopy. Deferasirox has shown antioxidant activity in all three model systems, causing substantial reduction in the rate of oxidation and oxidative damage. Deferasirox showed the greatest antioxidant activity in the oxidation of ascorbic acid with the participation of iron ions and reduced the reaction rate by about a 100 times. Overall, deferasirox appears to have lower affinity for copper in comparison to iron. Comparative studies of the antioxidant activity of deferasirox and the hydrophilic oral iron chelating drug deferiprone in the peroxidation of linoleic acid micelles showed lower efficiency of deferasirox in comparison to deferiprone.  相似文献   

16.
Selective fluorescence labelling of oxidized cellulose functionalities followed by GPC-MALLS was used to get a deeper insight into ink-induced degradation processes. As the method is very sensitive towards oxidation and molecular weight changes, slight variations at the very beginning of aging processes, e.g. during ink corrosion of cellulose, can be studied. Five different ink modifications were applied on model papers and underwent mild accelerated aging at 55 °C and cycling humidity (7 days) followed by a short period of static humid aging at 80 °C (2 days). Pure ink constituents like tannic acid or iron sulphate do not result in the same degree of oxidation or chain scission as complete inks. Balanced ink degrades paper more than single compounds, but less than unbalanced inks. Interestingly, some degradation occurs already during or shortly after the application process of unbalanced inks on paper. It could be demonstrated that this oxidation proceeded in a rather high Mw area, while the subsequent aging steps affected predominantly regions of shorter cellulose chains.  相似文献   

17.
The impact of the combined ascorbic acid and sulfur dioxide antioxidants on white wine oxidation processes was investigated using a range of analytical techniques, including flow injection analysis for free and total sulfur dioxide and two chromatographic methods for ascorbic acid, its oxidative degradation products and phenolic compounds. The combination of different analytical techniques provided a fast and simultaneous means for the monitoring of oxidation processes in a model wine system. In addition, the initial mole ratio of sulfur dioxide to ascorbic acid was varied and the model wine complexity was increased by the inclusion of metal ions (copper(II) and iron(II)). Sulfur dioxide was found not to be a significant binder of ascorbic acid oxidative degradation products and could not prevent the formation of certain phenolic pigment precursors. The results provide a detailed insight into the ascorbic acid/sulfur dioxide antioxidant system in wine conditions.  相似文献   

18.
Summary Bioavailability and/or homeostasis of some essential trace elements such as zinc, iron, etc., in the presence of phytate, fiber and calcium are subject to alteration. These factors were measured in this study for Iranian diets in a frame of a Coordinated Research Project (CRP). However, the most prominent dietary factor in this regard is phytate. The phytate effect on zinc homeostasis is a chemical phenomenon dependent physiologically on pH in the gastrointestinal tract at or near the sites of absorption. Calcium is a synergistic coprecipitating factor in the complexation of zinc by phytate. Fiber has also a tendency to absorb insoluble compounds in gastrointestinal tract including zinc, iron and many other trace elements. One of the most known clinical observations regarding zinc deficiency was found in the rural area of the Fars province of Iran in the late 1950s at Shiraz University. However, the molar ratio of [phytate] : [zinc] and [calcium] [phytate] : [zinc] in Iranian Diets in a recent study are 7-17 and 150-800, respectively. The critical ratios of [phytate] : [zinc] of 10 or less will provide adequate zinc to sustain homeostasis.  相似文献   

19.
The removal of non-reactive iron for different combinations of Fe2+ and tannic acid in irongall inks, via calcium phytate solutions, was studied. In parallel, the non-reactive iron removal kinetics was investigated using the pseudo first-order and second-order kinetic models. The results showed that the use of a dilute solution of calcium phytate to wash the impregnated paper strips removed the non-reactive iron from iron-gall inks in approximately 15 min in stoichiometric and non-stoichiometric combinations of iron and tannic acid. A second washing of the paper strips after an accelerated ageing, showed a distinct kinetic behaviour, with iron removal taking place simultaneously but apparently via a different mechanism. The use of a reference calcium phytate solution exhibited the same behaviour, suggesting that the use of dilute solutions as iron removal agents would represent less damage to historical documents. The results of kinetic modelling showed that all the combinations of Fe2+ and tannic acid used fitted the pseudo first-order kinetic model, when dilute and reference phytate solutions were tested as iron-desorbing agents.  相似文献   

20.
Fundamental aspects of the oxidative destruction of thiocyanates by hydrogen peroxide in an acid medium in the presence of a catalyst, iron(III) ions, was studied. The effect of copper(II) ions on the mechanism and kinetics of SCN-oxidation in the presence of thiosulfates was considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号