首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
我们用SAXS、TEM等方法研究了分子量分散性较大的PMMA-b-PTHF两嵌段共聚物的微相结构。试样的分子量多分散系数为1.99,PMMA的重量分数为0.48。实验结果表明,其平衡微相结构并不是层状微区,而是在尺寸上也具有一定分散性的球状微区,微区之间并未形成三维有序的大晶格结构,而是一种无规聚集结构。这和单分散两嵌段共聚物理论所预言的结果是不同的。  相似文献   

2.
利用固体高分辨13CCP/MAS及二维WISE核磁共振技术研究了聚(L-丙氨酸)-聚乙二醇单甲醚双嵌段共聚物(MPEG-b-PLA)在固态下的微相结构和链段运动行为.结果表明,聚乙二醇链段在形成嵌段共聚物后结晶度明显下降,同时存在晶区和非晶区,从而表现出两种不同的运动状态.而聚乙二醇链段的引入对聚L-丙氨酸链段影响不大,嵌段共聚物中聚L-丙氨酸链段高度结晶,同时含有大量的α螺旋结构,分子链运动严重受限,估计聚L-丙氨酸链段的相区尺寸很小.  相似文献   

3.
 我们用SAXS、TEM等方法研究了分子量分散性较大的PMMA-b-PTHF两嵌段共聚物的微相结构。试样的分子量多分散系数为1.99,PMMA的重量分数为0.48。实验结果表明,其平衡微相结构并不是层状微区,而是在尺寸上也具有一定分散性的球状微区,微区之间并未形成三维有序的大晶格结构,而是一种无规聚集结构。这和单分散两嵌段共聚物理论所预言的结果是不同的。  相似文献   

4.
多嵌段聚醚-酯共混物的微相结构与血液相容性研究   总被引:3,自引:0,他引:3  
本工作合成了两种性质不同的聚醚-酯多嵌段共聚物,一种是以聚对苯二甲酸乙二酯为硬链段,聚乙二醇(PEGT)为软链段的亲水性多嵌段共聚物,另一种是以聚对苯二甲酸乙二酯为硬链段,聚四亚甲基醚二醇(PTMGT)为软链段的疏水性多嵌段共聚物。将两种共聚物以一定的比例共混,制备多嵌段聚醚-酯共混物。 改变共混物的组成,研究其微相结构与血液相容性的关系。采用动态力学谱(VES)、示差扫描量热(DSC)、透射电镜(TEM)和扫描电镜(SEM)等测定共混物的微观结构,采用微球柱法评价共混物的血液相容性。实验结果表明:材料的微观非均相结构及亲水平衡是决定血液相容性的重要因素。  相似文献   

5.
将配位聚合法合成的等规聚苯乙烯与聚(乙烯/丙烯)嵌段共聚反应产物进行溶剂车取分离,得到嵌段共聚物[iPS-b-Poly(E-co-P)]的含量约为总重量的20%~30%,并用13CNMR、FTIR、WAXD、DSC和电子显微镜进行表征.该共聚物是具有等规聚苯乙烯(iPS)与乙丙无规共聚链段结构的三元两嵌段共聚物,且iPS链段有一定的结晶度.由透射电镜可以看出,嵌段共聚物存在微相分离结构,相区尺寸在100nm数量级.  相似文献   

6.
聚苯乙烯/聚二甲基硅氧烷嵌段共聚物的合成与表征   总被引:2,自引:0,他引:2  
通过阴离子溶液聚合合成了聚苯乙烯/聚二甲基硅氧烷的嵌段共聚物(PS-b-PDMS),并用GPC、FTIR、DMA,^1H-NMR、TEM等分析手段袁征了其结构与组成;电镜测得该嵌段共聚物的微区尺寸大约为20~30nm,与计算微区尺寸的结果相近。该共聚物具有非常低的表面能。  相似文献   

7.
设计了具有高Flory-Huggins相互作用参数的嵌段共聚物聚(对叔丁基苯乙烯)-b-聚(甲基丙烯酸羟乙酯)(PtBS-b-PHEMA),并分别采用阴离子聚合和原子转移自由基聚合(ATRP)方式制备了不同嵌段比例、不同分子量的窄分子量分布的该嵌段共聚物。利用核磁共振分析了嵌段共聚物的组分,利用小角X射线散射(SAXS)分析了嵌段共聚物相分离后的尺寸及结构,对比研究了两种聚合方式对嵌段共聚物性能的影响。结果表明,采用阴离子聚合方式得到的嵌段共聚物分子量分布更窄,相同分子量下发生微相分离的尺寸更小,其在150℃真空烘箱中加热18h后可以形成尺寸为9.96nm的柱状相及8.42nm的层状相。  相似文献   

8.
以S,S'-二(α,α '-二甲基-α″-乙酸)三硫代碳酸酯(TRIT)为链转移剂,利用可逆加成断裂链转移自由基聚合(RAFT)制备了窄分布的端羧基大分子链转移剂——聚苯乙烯和聚丙烯腈.以大分子链转移剂为RAFT试剂,引发苯乙烯或丙烯腈单体的RAFT聚合,进一步得到聚丙烯腈-聚苯乙烯-聚丙烯腈(PAN-b-PS-b-PAN)和聚苯乙烯-聚丙烯腈-聚苯乙烯(PS-b-PAN-b-PS)三嵌段共聚物.通过1 H-NMR、FT-IR、凝胶渗透色谱(GPC)对所得产物的结构和分子量进行了袁征,通过原子力显微镜(AFM)和拉曼光谱(Raman)研究了嵌段共聚物薄膜的微相分离结构与热解行为.结果表明:所得产物中除PAN-b-PS-b-PAN外,分子量分布均小于1.2.嵌段共聚物薄膜经250℃热稳定化与600℃热解处理后,碳化并形成了规整的石墨结构,微区尺寸在75 nm左右.  相似文献   

9.
本文采用 DSC技术,系统地研究了具有不同形态结构的聚苯乙烯-聚异戊二烯二嵌段共聚物的玻璃化转变及其微相分离行为。研究表明:PI相的玻璃化转变温度T_(g1)高于纯PI的T_g,并随PI嵌段子量的降低而略有升高;由PS组成基体(PS含量高)的嵌段共聚物的T_(g1)低于由PI组成基体(PS含量低)的嵌段共聚物的T_(g1),PS相的玻璃化转变温度T_(g2)低于纯PS的T_g,并随 PS嵌段分子量的降低而显著下降;由PS组成基体(PS含量高)的嵌段共聚物的T_(g2)高于白PI组成基体(PS含量低)的嵌段共聚物的T_(g2)。以上实验事实均可由在分相界面区内以化学链相连的PS与PI链段间的相互作用及其对PS与PI链段运动的影响予以解释。  相似文献   

10.
通过RAFT聚合制备了一系列窄分子量分布的聚(γ-甲基丙烯酰氧基丙基三乙氧基硅烷)(PTEPM)-b-聚甲基丙烯酸甲酯(PMMA)嵌段共聚物和PTEPM、PMMA低聚物.将具有不同PMMA分子量的2种PTEPM-b-PMMA共聚物与低聚物PMMA或PTEPM进行共组装(微相分离),形成片、柱、球等不同PTEPM相区结构.采用盐酸气氛处理,PTEPM相区水解交联形成倍半硅氧烷SiO1.5内核,分离纯化得到聚合物长短刷接枝纳米粒子.使用这种相分离-交联-分散制备方法,调节嵌段共聚物分子结构和三组分比例,可实现聚合物接枝纳米粒子内核形状和尺寸、接枝密度、长短刷比例、长刷长度的精确调控.这些纳米粒子是研究聚合物纳米复合材料结构-性能关系的理想模型体系.  相似文献   

11.
The spectral-polarization characteristics of absorption and phosphorescence of molecules of the initial form of nitro-substituted indolinospirobenzothiopyran were studied in oriented polyethylene films and in solutions with different polarity. An oscillator model of the electron transitions responsible for the formation of absorption and luminescence spectra was suggested. It was established that the principal differences in the spectral and photophysical properties of the compound studied and its oxygen-containing analog are associated with the fact that the electronegativity of the S atom is lower than that of the O atom. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1143–1146, June, 1997.  相似文献   

12.
Two vanilloids, (5E)-8-(4-hydroxy-3-methoxyphenyl)oct-5-en-4-one (1) and 4-[3-hydroxydecyl]-2-methoxyphenol (2), isolated from the dried seeds of Grains of Paradise (Aframomum melegueta), were synthesized; the latter compound was made as the S-enantiomer and the material derived from the seeds was found to be a 1:1.7 mixture of the R and S isomers. The synthetic route used should allow the preparation of analogs having extended alkyl chains and consequently different lipophilicity, and 3, a homolog of 2, was also prepared.  相似文献   

13.
非那雄胺能抑制5α-还原酶的活性,明显降低二氢睾酮水平,是一种治疗良性前列腺增生的有效药品。该合成工艺以甾烯酮酸为原料,将其与氯化亚砜反应,无须分离即与叔丁胺反应得17β-酰胺化合物,再氧化开环,环合,氢化,脱氢合成了非那雄胺。经元素分析、IR、1HNMR、13CNMR、MS分析表征了其结构。该法无须使用昂贵的2,2-二吡啶二硫化物和剧毒药品苯亚硒酸酐,且以乙酸铵代替氨气,降低了对设备的要求和腐蚀,更适用于工业生产。  相似文献   

14.
Main hydration products of two cement pastes, i.e. CSH-gel, portlandite (P) (and specific surface S) were studied by static heating, and by SEM, TEM and XRD, as a function of cement strength (C-33 and C-43) hydration time (th) and subsequent hydration in water vapour.Total change in mass on hydration and air drying, Mo, increased with strength of cement paste and with hydration time. Content of water escaping at 110 to 220°C, defined as water bound with low energy, mainly interlayer and hydrate water, was independent on cement strength but its content increased with (th). Content of chemically bound (zeolitic) water in CSH-gel, escaping at 220-400°C, was slightly dependent on strength and increased with (th). It was possibly derived from the dehydroxylation of CSH-gel and AFm phase. Portlandite water, escaping at 400-500°C, was independent on cement strength and was higher on longer hydration. Large P crystals were formed in the weaker cement paste C-33. Smaller crystals were formed in C-43 but they increased with (th). Carbonate formated on contact with air (calcite, vaterite and aragonite), decomposed in cement at 600-700oC. It was high in pastes C-33(1 month) and C-43(1 month), i.e. 5.7 and 3.3%, respectively; it was less than 1% after 6 hydration months (low sensitivity to carbonation) in agreement with the XRD study showing carbonates in the air dry paste (1month), and its absence on prolonged hydration (6 months) and on acetone treatment. Water vapour treatment of (6 months) pastes or wetting-drying increased this sensitivity.Nanosized P-crystals, detected by TEM, could contribute to the cement strength; carbonate was observed on the rims of gel clusters.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

15.
16.

The heats of detonation of 20 simple high explosives and explosive mixtures were determined by means of an adiabatic detonation calorimeter designed by the authors. The results indicated that the performance of the instrument was reliable and the experimental data were very accurate. For explosive mixtures, there was a linear accumulative relationship between the heats of detonation of the explosive mixture and its components. Accordingly, the heats of detonation of explosive mixtures could be calculated directly from the heats of detonation of simple explosives and the characteristic heats of other components. The experiments showed that the gold or brass shell of the cylindrical charge could be substituted by a thick-walled porcelain shell, which had the advantage of cheapness.

  相似文献   

17.
针对恶臭测试的环境影响问题,提出了解决的实例方案,并对方案的要点及优缺点进行讨论,此方案在实际操作中具有较好的效果。  相似文献   

18.
The kinetics of the interaction between lithium carbonate and silica with various degrees of dispersion was investigated by TG and DTA methods. It was found that the utilization of pyrogenic silica with a specific surface area of about 300 m2g-1 instead of aerosil with one of 175 m2g-1 leads to an increase of the reaction rate between lithium carbonate and silica, which depends on the formation and growth of lithium orthosilicate crystals in the first stage, and is conditioned by the diffusion of lithium and oxygen ions through the lithium orthosilicate layer formed at temperatures above 800 K. This supposition is supported by the kinetic analysis results obtained with the use of the different models. The optimal regime of heating is recommended. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
小环化合物中饱和碳质子化学位移的计算   总被引:3,自引:0,他引:3  
小环化合物由于其张力、构型、构象和各向异性效应等原因,环碳上质子化学位移缺乏规律性,难以预测,对此作者曾提出一种近似算法。本文根据303种小环化合物中饱和碳质子的化学位移实验数据,将适于计算这类质子化学位移的公式表述为:  相似文献   

20.
袁丽秋 《化学教育》2006,27(5):8-10
面对日益枯竭的能源危机,氢能是一种洁净、最有前景的替代能源。目前在各种制氢的方法中光催化分解水制氢的研究最多,光解水过程中催化剂最关键,本文对利用太阳能光解水的途径、提高光催化反应效率以及光催化剂的开发研究进行了综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号