共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental measurement of the plastic biaxial mechanical response for an aluminum alloy (AA5754-O) sheet metal is presented. Traditional methods of multiaxial sheet metal testing require the use of finite element analysis (FEA) or other assumptions of material response to determine the multiaxial true stress versus true strain behavior of the as-received sheet material. The method used here strives to produce less ambiguous measurements of data for a larger strain range than previously possible, through a combination of the Marciniak flat bottom ram test and an X-ray diffraction technique for stress measurement. The study is performed in conjunction with a study of the microstructural changes that occur during deformation, and these microstructural results are briefly mentioned in this work. Issues of calibration and applicability are discussed, and results are presented for uniaxial (U), plane strain (PS), and balanced biaxial (BB) extension. The results show repeatable behavior (within quantified uncertainties) for U to 20%, PS to almost 15%, and BB to above 20% in-plane strains. The results are first compared with three common yield locus models (von Mises’, Hill’48, and Hosford’79), and show some unexpected results in the shape change of the yield locus at high strain levels (>5% strain). These changes include the rotation of the locus toward the von Mises surface and elongation in the balanced biaxial direction. Comparison with a more complex yield locus model (Yld2000-2d with eight adjustable parameters) showed that the locus elongation in the biaxial direction could be fit well (for a specific level of work), but at the detriment of fit to the plane strain data. Artificially large plastic strain ratios would be needed to match both the biaxial and plane strain behavior even with this more complex model. 相似文献
2.
Nicolas NicaiseStéphane Berbenni Francis WagnerMarcel Berveiller Xavier Lemoine 《International Journal of Plasticity》2011,27(2):232-249
Micro-macro scale transition theories were developed to model the inelastic behaviour of polycrystals starting from the local behaviour of the grains. The anisotropy of the plastic behaviour of polycrystalline metals was essentially explained by taking into account the crystallographic textures. Issues like plastic heterogeneities due to grain size dispersion, involving the Hall-Petch mechanism at the grain scale, were often not taken into account, and, only the role of a mean grain size was investigated in the literature. Here, both sources of plastic heterogeneities are studied using: (i) experimental data from EBSD measurements and tensile tests, and, (ii) a self-consistent model devoted to elastic-viscoplastic heterogeneous materials. The results of the model are applied to two different industrial IF steels with similar global orientation distributions functions but different mean grain sizes and grain size distributions. The coupled role of grain size distributions and crystallographic textures on the overall tensile behaviour, local stresses and strains, stored energy and overall plastic anisotropy (Lankford coefficients) is deeply analyzed by considering different other possible correlations between crystallographic orientations and grain sizes from the measured data. 相似文献
3.
P.J.M. Janssen J.P.M. Hoefnagels Th.H. de Keijser M.G.D. Geers 《Journal of the mechanics and physics of solids》2008,56(8):2687-2706
Size effects in metals have received considerable attention in literature in the last decades. For preparing specimens dedicated processing techniques, such as laser-cutting, micro-milling, turning, etc., are used. Most of these processing methods intrinsically damage crystals just below the worked surface. In macroscopic applications, the effect on the overall mechanical behaviour can safely be neglected in most cases. Upon miniaturisation, however, the influence of the affected region becomes more important and may induce a processing induced size effect, which is far from negligible. Processing induced size effects are analysed by carefully characterising the plastic yielding in uniaxial tension of rectangular, -thick aluminium sheet specimens, with a well-defined homogeneous microstructure containing through-thickness grains. The specimens are processed to different widths by three independent machining techniques: (1) laser-cutting, (2) mechanical cutting, and (3) extensive grinding from a larger width. These independent techniques all result in a distinct processing induced size effect upon miniaturisation, i.e. an increase of up to 200% in yield stress for a decrease from about 12 to 3 grains over the specimen width. Using a simple Taylor averaging model, it is shown that the yield stress in the affected edge region increased to 210–350% of its initial (or bulk) value. In addition, it is found that even a prolonged anneal near the melting temperature can only partially remove the processing induced size effect. The results clearly demonstrate that processing induced size effects have to be considered in the design of miniaturised devices and parts as well as in scientific research relying on the testing of manufactured small-scale test specimens. 相似文献
4.
Morton E. Gurtin 《Journal of the mechanics and physics of solids》2002,50(1):5-32
This study develops a gradient theory of single-crystal plasticity that accounts for geometrically necessary dislocations. The theory is based on classical crystalline kinematics; classical macroforces; microforces for each slip system consistent with a microforce balance; a mechanical version of the second law that includes, via the microforces, work performed during slip; a rate-independent constitutive theory that includes dependences on a tensorial measure of geometrically necessary dislocations. The microforce balances are shown to be equivalent to nonlocal yield conditions for the individual slip systems. The field equations consist of the yield conditions coupled to the standard macroscopic force balance; these are supplemented by classical macroscopic boundary conditions in conjunction with nonstandard boundary conditions associated with slip. As an aid to solution, a weak (virtual power) formulation of the nonlocal yield conditions is derived. To make contact with classical dislocation theory, the microstresses are shown to represent counterparts of the Peach-Koehler force on a single dislocation. 相似文献
5.
A model is proposed that deals with the transient mechanical anisotropy during strain-path changes in metals. The basic mechanism is assumed to be latent hardening or softening of the slip systems, dependent on if they are active or passive during deformation, reflecting microstructural mechanisms that depend on the deformation mode rather than on the crystallography. The new model captures the experimentally observed behaviour of cross hardening in agreement with experiments for an AA3103 aluminium alloy. Generic results for strain reversals qualitatively agree with two types of behaviour reported in the literature – with or without a plateau on the stress–strain curve. The influence of the model parameters is studied through detailed calculations of the response of three selected parameter combinations, including the evolution of yield surface sections subsequent to 10% pre-strain. The mathematical complexity is kept to a minimum by avoiding explicit predictions related directly to underpinning microstructural changes. The starting point of the model is a combination of conventional texture and work hardening approaches, where an adapted full-constraints Taylor theory and a simple single-crystal work-hardening model for monotonic strain are used. However, the framework of the model is not restricted to these particular models. 相似文献
6.
Deformation induced dislocation microstructures appear in Face-Centred Cubic metals and alloys if applying large enough tensile/cyclic strain. These microstructures are composed of a soft phase with a low dislocation density (cell interiors, channels…) and a hard phase with a high dislocation density (walls). It is well known that these dislocation microstructures induce backstresses, which give kinematic hardening at the macroscopic scale. A simple two-phase localization rule is applied for computing these intragranular backstresses. This is based on Eshelby’s inclusion problem and the Berveiller–Zaoui approach. It takes into account an accommodation factor. Close-form formulae are given and permit the straightforward computation of reasonable backstress values even for large plastic strains. Predicted backstress values are compared to a number of backstress experimental measurements on single crystals. The agreement of the model with experiments is encouraging. This physical intragranular kinematic hardening model can easily be implemented in a polycrystalline homogenization code or in a crystalline finite element code. Finally, the model is discussed with respect to the possible plastic glide in walls and the use of enhanced three phase localization models. 相似文献
7.
C. Lexcellent A. Vivet C. Bouvet S. Calloch P. Blanc 《Journal of the mechanics and physics of solids》2002,50(12):2717-2735
Biaxial proportional loading such as tension (compression)–internal pressure and bi-compression tests are performed on a Cu-Zn-Al and Cu-Al-Be shape memory polycrystals. These tests lead to the experimental determination of the initial surface of phase transformation (austenite→martensite) in the principal stress space (σ1,σ2). A first “micro–macro” modeling is performed as follows. Lattice measurements of the cubic austenite and the monoclinic martensite cells are used to determine the “nature” of the phase transformation, i.e. an exact interface between the parent phase and an untwinned martensite variant. The yield surface is obtained by a simple (Sachs constant stress) averaging procedure assuming random texture. A second modeling, performed in the context of the thermodynamics of irreversible processes, consists of a phenomenological approach at the scale of the polycrystal. These two models fit the experimental phase transformation surface well. 相似文献
8.
Failure in micro-reinforced composites is investigated numerically using the strain-gradient plasticity theory of Gudmundson [Gudmundson, P., 2004. A unified treatment of strain gradient plasticity. Journal of the Mechanics and Physics of Solids 52 (6) 1379–1406] in a plane strain visco-plastic formulation. Bi-axially loaded unit cells are used and failure is modeled using a cohesive zone at the reinforcement interface. During debonding a sudden stress drop in the overall average stress–strain response is observed. Adaptive higher-order boundary conditions are imposed at the reinforcement interface for realistically modeling the restrictions on moving dislocations as debonding occurs. It is found that the influence of the imposed higher-order boundary conditions at the interface is minor. If strain-gradient effects are accounted for a void with a smooth shape develops at the reinforcement interface while a smaller void having a sharp tip nucleates if strain-gradient effects are excluded. Using orthogonalization of the plastic strain gradient with three corresponding material length scales it is found that, the first length scale dominates the evaluated overall average stress–strain response, the second one only has a small effect and the third one has an intermediate effect. Finally, studies of reinforcement having elliptical cross-sections show rather significant gradients of stress which is not seen for the corresponding circular cross-sections. Also, an increased drop in the overall load carrying capacity is observed for cross-sections elongated perpendicular to the principal tensile direction compared to the corresponding circular cross-sections. 相似文献
9.
Dennis M. Kochmann 《Journal of the mechanics and physics of solids》2009,57(6):987-1002
Within continuum dislocation theory the plastic deformation of a single crystal with one active slip system under plane-strain constrained shear is investigated. By introducing a twinning shear into the energy of the crystal, we show that in a certain range of straining the formation of deformation twins becomes energetically preferable. An energetic threshold for the onset of twinning is determined. A rough analysis qualitatively describes not only the evolving volume fractions of twins but also their number during straining. Finally, we analyze the evolution of deformation twins and of the dislocation network at non-zero dissipation. We present the corresponding stress-strain hysteresis, the evolution of the plastic distortion, the twin volume fractions and the dislocation densities. 相似文献
10.
11.
The low-temperature (less than one-fourth of the melting temperature) creep deformation behavior of hexagonally close-packed (HCP) α-Ti–1.6 wt.% V was investigated. Creep tests were performed at various temperatures between room temperature and 205 °C at 95% of the respective yield stress at the different temperatures. The creep strain rate was found to increase with increasing temperature. Scanning and transmission electron microscopy revealed that slip and unusually slow twin growth, or time-dependent twinning, are active deformation mechanisms for the entire temperature range of this investigation. The activation energy for creep of this alloy was calculated to identify the rate-controlling deformation mechanism, and was found to increase with increasing creep strain. At low strain, the activation energy for creep was found to be close to the previously calculated activation energy for slip. At high strain, the calculated activation energy indicates that both slip and twinning are significant deformation mechanisms. The appearance of twinning at high strains is explained by a model for twin nucleation by dislocation pileups. 相似文献
12.
Jinghong Fan Ross J. StewartXiangguo Zeng 《International Journal of Plasticity》2011,27(12):2103-2124
In the concurrent multiscale analysis, it is difficult to have truly seamless transition between the atomistic and continuum scale. This situation is even worse when defects pass through the boundary between different scales. For example, there is a lack of effective methods to handle the dislocation passing through scale boundaries which is important to investigate plasticity at the nanoscale. In this paper, the generalized particle (GP) method proposed by the first author is further developed so that a seamless transition and dislocation passing between different scales can be realized. Specifically, the linkage between different scales is through material neighbor-link cells (NLC) with scale duality. This indicates that material elements can be high-scale particles through a lumping process and can also be atoms via decomposition depending on the needs of the simulation. At the interface, the information transfer from bottom scale-up or from top scale-down is through the particles or atoms in the NLC. They are with the same material structure, all possess nonlocal constitutive behavior; thus, the smooth transition at the interface between different scales can be attained and validated to avoid non-physical responses. To save degrees of freedom, atoms are lumped together into a generalized particle in the domain in which the deformation gradient is near homogeneous. On the other hand, when defects such as dislocations in the atomistic domain are near the particle domain, the particles along dislocation propagation path and its surrounding region will be decomposed into atoms so dislocations can freely pass through the scale boundary and propagate inside the model just as it propagates in the deformed atomistic crystal structure. The method is verified first for seamless transition of variables at the scale boundary by a one-dimensional model and then verified for dislocation nucleation and propagation passing through scale boundaries in two cases, one is near the free surface and the other is inside of the copper nanowire. All the validations are through comparisons with fully atomistic analyses under same conditions. The comparison is satisfactory. 相似文献
13.
Within continuum dislocation theory the plane constrained uniaxial extension of a single crystal strip deforming in single or double slip is analyzed. For the single and symmetric double slip, the closed-form analytical solutions are found which exhibits the energetic and dissipative thresholds for dislocation nucleation, the Bauschinger translational work hardening, and the size effect. Numerical solutions for the non-symmetric double slip are obtained by finite element procedures. 相似文献
14.
Within continuum dislocation theory the plastic deformation of bicrystals under a mixed deformation of plane constrained uniaxial extension and shear is investigated with regard to the nucleation of dislocations and the dislocation pile-up near the phase boundaries of a model bicrystal with one active slip system within each single crystal. For plane uniaxial extension, we present a closed-form analytical solution for the evolution of the plastic distortion and of the dislocation network in the case of symmetric slip planes (i.e. for twins), which exhibits an energetic as well as a dissipative threshold for the dislocation nucleation. The general solution for non-symmetric slip systems is obtained numerically. For a combined deformation of extension and shear, we analyze the possibility of linearly superposing results obtained for both loading cases independently. All solutions presented in this paper also display the Bauschinger effect of translational work hardening and a size effect typical to problems of crystal plasticity. 相似文献
15.
E. Nakamachi K. Hiraiwa H. Morimoto M. Harimoto 《International Journal of Plasticity》2000,16(12):1419-1441
The elastic/crystalline viscoplastic constitutive equation, based on a newly proposed hardening-softening evolution equation, is introduced into the dynamic-explicit finite element code “Itas-Dynamic.” In the softening evolution equation, the effective distance and the angle between each slip system of a crystal are introduced to elucidate the interaction between the slip systems, which causes a decrease of dislocation density. The polycrystal sheet is modeled by Voronoi polygons, which correspond to the crystal grains; and by the selected orientations, which can relate to the texture, they are assigned to the integration points of the finite elements. We propose a direct crystal orientation assignment method, which means that each integration point of finite element has an assigned orientation, and its orientation can be rotated independently. Therefore, this inhomogeneous polycrystal model can consider the plastic induced texture development and subsequent anisotropy evolution. The parameters of the constitutive equation are identified by uni-axial tension tests carried out on single crystal sheets. Numerical results obtained for sheet tensions are compared with experimental ones to confirm the validity of our finite element code. Further, we investigate the following subjects: (1) how the initial orientation of single crystal affects slip band formation and strain localization; (2) how the grain size and particular orientations of the grain affect the strain localization in case of a polycrystal sheet. It is confirmed that the orientation of a single crystal can be related to the primary slip system and the deformation induced activation of that system, which in turn can be related to the slip band formation of the single crystal sheet. Further, in case of a polycrystal sheet, the larger the grain size, the more the strain localizes at a specific crystal, which has the particular orientation. It is confirmed through comparisons with experiments that our finite element code can predict the localization of strain in sheets and consequently can estimate the formability of sheet metals. 相似文献
16.
17.
J.G. Swadener E.P. GeorgeG.M. Pharr 《Journal of the mechanics and physics of solids》2002,50(4):681-694
Experimental results are presented which show that the indentation size effect for pyramidal and spherical indenters can be correlated. For a pyramidal indenter, the hardness measured in crystalline materials usually increases with decreasing depth of penetration, which is known as the indentation size effect. Spherical indentation also shows an indentation size effect. However, for a spherical indenter, hardness is not affected by depth, but increases with decreasing sphere radius. The correlation for pyramidal and spherical indenter shapes is based on geometrically necessary dislocations and work-hardening. The Nix and Gao indentation size effect model (J. Mech. Phys. Solids 46 (1998) 411) for conical indenters is extended to indenters of various shapes and compared to the experimental results. 相似文献
18.
The higher-order stress work-conjugate to slip gradient in single crystals at small strains is derived based on the self-energy of geometrically necessary dislocations (GNDs). It is shown that this higher-order stress changes stepwise as a function of in-plane slip gradient and therefore significantly influences the onset of initial yielding in polycrystals. The higher-order stress based on the self-energy of GNDs is then incorporated into the strain gradient plasticity theory of Gurtin [2002. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5-32] and applied to single-slip-oriented 2D and 3D model crystal grains of size D. It is thus found that the self-energy of GNDs gives a D-1-dependent term for the averaged resolved shear stress in such a model grain under yielding. Using published experimental data for several polycrystalline metals, it is demonstrated that the D-1-dependent term successfully explains the grain size dependence of initial yield stress and the dislocation cell size dependence of flow stress in the submicron to several-micron range of grain and cell sizes. 相似文献
19.
Multiscale modeling of plasticity based on embedding the viscoplastic self-consistent formulation in implicit finite elements 总被引:1,自引:0,他引:1
This paper is concerned with the multiscale simulation of plastic deformation of metallic specimens using physically-based models that take into account their polycrystalline microstructure and the directionality of deformation mechanisms acting at single-crystal level. A polycrystal model based on self-consistent homogenization of single-crystal viscoplastic behavior is used to provide a texture-sensitive constitutive response of each material point, within a boundary problem solved with finite elements (FE) at the macroscale. The resulting constitutive behavior is that of an elasto-viscoplastic material, implemented in the implicit FE code ABAQUS. The widely-used viscoplastic selfconsistent (VPSC) formulation for polycrystal deformation has been implemented inside a user-defined material (UMAT) subroutine, providing the relationship between stress and plastic strain-rate response. Each integration point of the FE model is considered as a polycrystal with a given initial texture that evolves with deformation. The viscoplastic compliance tensor computed internally in the polycrystal model is in turn used for the minimization of a suitable-designed residual, as well as in the construction of the elasto-viscoplastic tangent stiffness matrix required by the implicit FE scheme.Uniaxial tension and simple shear of an FCC polycrystal have been used to benchmark the accuracy of the proposed implicit scheme and the correct treatment of rotations for prediction of texture evolution. In addition, two applications are presented to illustrate the potential of the multiscale strategy: a simulation of rolling of an FCC plate, in which the model predicts the development of different textures through the thickness of the plate; and the deformation under 4-point bending of textured HCP bars, in which the model captures the dimensional changes associated with different orientations of the dominant texture component with respect to the bending plane. 相似文献
20.
Comparison of the work-hardening of metallic sheets using tensile and shear strain paths 总被引:1,自引:0,他引:1
This work deals with the characterization of the kinematic work-hardening of a bake-hardening steel. A shear test device has been designed and its use for the characterization of the work-hardening of sheet metals is described. Two main results are presented. Firstly, a local strain measurement, based on the following of three dots drawn on the gauge area, gives the evolution of the strain tensor eigenvalues during the test. It is shown, by comparing the theoretical kinematics of simple shear with a slightly perturbated one, that the strain state is close to the ideal one in the center of the gauge area. Secondly, reversal of the shear direction is performed after several prestrain and the evolution of the kinematic work-hardening with the equivalent plastic strain has been identified using an anisotropic elasto-viscoplastic model of Hill 1948 type. Isotropic and kinematic contributions of the work-hardening are also calculated from loading–unloading tensile tests and are compared to those obtained from the simple shear tests. The results show a discrepancy between both identification for the isotropic and the kinematic hardening. However, they are in agreement concerning the evolution of the global work-hardening. 相似文献