首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five different verdins, including one zinc metal chelate, were examined by laser flash techniques. Triplet molar absorption coefficients, triplet and singlet oxygen quantum yields and triplet lifetimes were determined. Zinc methyl pyroverdin (ZNMPV), copro II verdin trimethyl ester (CVTME) and deuteroverdin methyl ester (DVME) have the highest triplet and singlet oxygen quantum yields. ZNMPV and CVTME have the longest triplet lifetimes. Our data are consistent with singlet oxygen as the primary modality for phototherapy and it is suggested that DVME and CVTME may be useful agents.  相似文献   

2.
The photobehavior of fluoroquinolone antibiotics, one of the most successful classes of drugs in therapeutic applications, has recently been the object of increasing interest due to the finding of their phototoxic and photocarcinogenic properties. The main results obtained for a series of structurally related, representative fluoroquinolone drugs is reviewed. Both activation of oxygen and various degradation pathways have been identified and the effects of medium and structure have been rationalized. The results can help in the understanding of the photochemistry occurring in biological environments and in the assessing of the correlation between structural characteristics and biological photodamage.  相似文献   

3.
The photophysics and photochemistry of nalidixic acid (NA) were studied as function of pH and solvent properties. The ground state of NA exhibits different protonated forms in the range of pH 1.8-10.0. Fluorescence studies showed that the same species exist at the lowest singlet excited state. Absorption experiments were carried out with NA and with the methylated analog of nalidixic acid (MNE) in different organic solvents and water pH 3, where the main species corresponds to that protonated at the carboxylic group. These studies and the DFT calculation of torsional potential energy profiles suggest that the most stable conformation of the NA in nonprotic solvents corresponds to a closed structure caused by the existence of intramolecular hydrogen bond. Absorption and fluorescence spectra were studied in sulfuric acid solution. The pK value (Ho -1.0) found in these conditions was attributed to the protonation of the 4' keto oxygen atom of the heterocyclic ring. Theoretical calculations (DFT/B3LYP/6-311G*) of the energies of the different monoprotonated forms of the NA and Fukui indexes (f(x)-) showed that the species with the proton attached to 4' keto oxygen atom is the most stable of all the cationic forms. MNE and enoxacin also showed the protonation of the 4' keto oxygen atom with similar pK values. The photodecomposition of NA is dependent on the medium properties. Faster decomposition rates were obtained in strong acid solution. In nonprotic solvents, a very slow decomposition rate was observed.  相似文献   

4.
The photophysics and photochemistry of a series of naphthoxazinones have been studied using a combination of methods ranging from steady-state and time-resolved spectroscopic techniques to product analysis. The photophysics of naphthoxazinone derivatives is very dependent on the structure: phenanthrene-like compounds exhibit higher fluorescence quantum yield than the less aromatic anthracene-like homologous. The latter, exhibit a substantial degree of charge transfer in the excited singlet state. These compounds are fairly photostable in the absence of additives, yielding a single photoproduct arising from the triplet state. The presence of electron donors such as amines increases the photoconsumption quantum yield and changes the product distribution, the primary photoproduct being a dihydronaphthoxazinone that photoreacts further yielding ultimately an oxazoline derivative.  相似文献   

5.
1-Nitropyrene (1NPy) is the most abundant nitropolycyclic aromatic contaminant encountered in diesel exhausts. Understanding its photochemistry is important because of its carcinogenic and mutagenic properties, and potential phototransformations into biologically active products. We have studied the photophysics and photochemistry of 1NPy in solvents that could mimic the microenvironments in which it can be found in the atmospheric aerosol, using nanosecond laser flash photolysis, and conventional absorption and fluorescence techniques. Significant interactions between 1NPy and solvent molecules are demonstrated from the changes in the magnitude of the molar absorption coefficient, bandwidth at half-peak, oscillator strengths, absorption maxima, Stokes shifts, and fluorescence yield. The latter are very low (10 (-4)), increasing slightly with solvent polarity. Low temperature phosphorescence and room temperature transient absorption spectra demonstrate the presence of a low energy (3)(pi,pi*) triplet state, which decays with rate constants on the order of 10 (4)-10 (5) s (-1). This state is effectively quenched by known triplet quenchers at diffusion control rates. Intersystem crossing yields of 0.40-0.60 were determined. A long-lived absorption, which grows within the laser pulse, and simultaneously with the triplet state, presents a maximum absorption in the wavelength region of 420-440 nm. Its initial yield and lifetime depend on the solvent polarity. This species is assigned to the pyrenoxy radical that decays following a pseudo-first-order process by abstracting a hydrogen atom from the solvent to form one the major photoproducts, 1-hydroxypyrene. The (3)(pi,pi*) state reacts readily ( k approximately 10 (7)-10 (9) M (-1) s (-1)) with substances with hydrogen donor abilities encountered in the aerosol, forming a protonated radical that presents an absorption band with maximum at 420 nm.  相似文献   

6.
Fluorescence and photochemical processes in crystalline 5-fluorouracil (FU) were studied. It has been found by the spectral, luminescent, and ESR methods that upon photoirradiation of FU photoinduced electron and proton transfers occur, leading to the formation of three hydroxo tautomers and radical ion pairs, which are stabilized by the crystal matrix and luminesce with the emission wavelengths of 375, 415, 455 nm, and 530, 555 nm, respectively.  相似文献   

7.
The spectral properties of new fluorene-based photosensitizers for efficient singlet oxygen production are investigated at room temperature and 77 K. Two-photon absorption (2PA) cross-sections of the fluorene derivatives are measured by the open aperture Z-scan method. The quantum yields of singlet oxygen generation under one- and two-photon excitation (phi(delta) and 2PAphi(delta), respectively), are determined by the direct measurement of singlet oxygen luminescence at approximately 1270 nm. The values of phi(delta) are independent of excitation wavelength, ranging from 0.6-0.9. The singlet oxygen quantum yields under two-photon excitation are 2PAphi(delta) approximately 1/2 phi(delta), indicating that the two processes exhibit the same mechanism of singlet oxygen production, independent of the mechanism of photon absorption.  相似文献   

8.
Novel phenylazole ligands were applied successfully in the synthesis of cyclometalated iridium(III) complexes of the general formula [Ir(phenylazole)(2)(bpy)]PF(6) (bpy=2,2'-bipyridine). All complexes were fully characterized by NMR, IR, and MS spectroscopic studies as well as by cyclic voltammetry. Three crystal structures obtained by X-ray analysis complemented the spectroscopic investigations. The excited-state lifetimes of the iridium complexes were determined and showed to be in the range of several hundred ns to multiple μs. All obtained iridium complexes were active as photosensitizers in catalytic hydrogen evolution from water in the presence of triethylamine as a sacrificial reducing agent. Applying an in situ formed iron-based water reduction catalyst derived from [HNEt(3)](+) [HFe(3)(CO)(11)](-) and tris[3,5-tris-(trifluoromethyl)-phenyl]phosphine as the ligand, [Ir(2-phenylbenz-oxazole)(2)-(bpy)]PF(6) proved to be the most efficient complex giving a quantum yield of 16% at 440 nm light irradiation.  相似文献   

9.
The photochemistry and photophysics of aqueous solutions of uranyl nitrate have been investigated by nanosecond laser photolysis with excitation at 266 and 355 nm and by time-resolved fluorescence spectroscopy. The quantum yield has been determined for (UO22+)* formation under excitation with λ = 266 and 355 nm light (φ = 0.35). The quantum yield of uranyl luminescence under the same conditions is 1 × 10–2 and 1.2 × 10–3, respectively, while the quantum yield of luminescence in the solid state is unity, irrespective of the excitation wavelength. The decay of (UO22+)* in the presence of ethanol is biexponential. The rate constants of this process at pH 3.4 are k1 = (2.7 ± 0.2) × 107 L mol–1 s–1 and k2 = (5.4 ± 0.2) × 106 L mol–1 s–1. This biexponential behavior is explained by the existence of different complex uranyl ion species in the solution. The addition of colloidal TiO2 to the solution exerts no effect on the quantum yield of (UO22+)* formation or on the rate of the reaction between (UO22+)* and ethanol. The results of this study have been compared with data available from the literature.  相似文献   

10.
Proaporphines undergo light catalyzed rearrangement. Pakistanamine (1) is thus converted into lumipakistanine (2), while pronuciferine (7) and N-acetylnorpronuciferine (8) afford the corresponding C-9 hydroxylated aporphines 9 and 10. Possible biogenetic schemes for the formation of C-8, C-9-, and C-8,9-substituted aporphines are presented.  相似文献   

11.
The photochemistry and photophysics of one thiopyran (2,4,6-triphenyl-2-benzyl-2H-thiopyran) and two pyran (2,4,6-triphenyl-2H-pyran and 2,4-dimethyl-2,6-diphenyl-2H-pyran) derivatives were investigated by stationary and time resolved techniques. Both theory and experiments indicated a π,π* character for the lowest singlet states of these molecules, located in the UV region approximately at the same energy. Upon stationary UV irradiation at low temperature, colourless photoproducts were formed from the pyran derivatives, while coloured compound(s) were obtained from the thiopyran. Long-lived transients were observed at room temperature, which were assigned to the photoproducts obtained at low temperature; only in one case (2,4,6-triphenyl-2H-pyran) a triplet precursor was detected.  相似文献   

12.
The steric hindrance between the oxygen and halogen atoms results in the structural deformation of α-haloanthraquinones and their lowest excited triplet (T1) states are of mixed nπ *-ππ * or ππ * character with unusually short lifetimes. Moreover, the rates of hydrogen-atom abstraction from ethanol by the T1 states decrease with their increasing ππ * character, and the proximity of the halogen atom to the hydroxy group causes the photochemical intramolecular elimination of hydrogen halide from the initial photoproducts (α-haloanthrahydroquinones) yielding α-haloanthraquinones (or anthraquinone) with one less halogen atom than the original molecule; the final product is anthrahydroquinone. The remarkably large structural deformation of 1,8-dihaloanthrasemiquinone radicals which gives rise to the simultaneous formation of 1,8-dihaloanthrahydroquinones and the original anthraquinones. Of particular interest is observation of the absorption band(s) attributable to the second excited triplet (T2) states of 1,8-dihaloanthraquinones. However, the electron transfer from triethylamine (TEA) to these T2 states generating the radical anions is observed only in acetonitrile, while that to the T1 states generating their exciplexes with TEA is observed not only in acetonitrile but also in toluene and ethanol.  相似文献   

13.
Curcumin, with its recent success as an anti-tumor agent, has been attracting researchers from wide ranging fields of physics, chemistry, biology and medicine. The chemical structure of curcumin has two o-methoxy phenols attached symmetrically through α,β-unsaturated β-diketone linker, which also induces keto–enol tautomerism. Due to this, curcumin exhibits many interesting photophysical and photochemical properties. The absorption maximum of curcumin is 408–430 nm in most of the organic solvents, while the emission maximum is very sensitive to the surrounding solvent medium (460–560 nm) and the Stokes’ shift varied from 2000 to 6000 cm−1. The fluorescence quantum yield in most of the solvents is low and reduced significantly in presence of water. The fluorescence lifetime is short (<1 ns) and displayed multi-exponential decay profile. The singlet excited states of curcumin decay by non-radiative processes contributed mainly by intra- and intermolecular proton transfer with very low intersystem crossing efficiency. Polarity, π-bonding nature, hydrogen bond donating and accepting properties of the solvent influence the excited state photophysics of curcumin in a complex manner. The triplet excited states of curcumin absorb at 720 nm and react with oxygen to produce singlet molecular oxygen. The photodegradation of curcumin produces smaller phenols and the photobiological activity of curcumin is due to the generation of reactive oxygen species.Being lipophilic in nature, the water solubility of curcumin could be enhanced upon the addition of surfactants, polymers, cyclodextrins, lipids and proteins. Changes in the absorption and fluorescence properties of curcumin have been found useful to follow its interaction and site of binding in these systems. Curcumin fluorescence could be employed to follow the unfolding pattern and structural changes in proteins. The intracellular curcumin showed more fluorescence in tumor cells than in normal cells and fluorescence spectroscopy could be used to monitor its preferential localization in the membrane of tumor cells. This review, presents the current status of research on the photophysical, photochemical and photobiological processes of curcumin in homogeneous solutions, bio-mimetics and living cells. Based on these studies, the possibility of developing curcumin, as a bimolecular sensitive fluorescent probe is also discussed.  相似文献   

14.
We have synthesized all three possible isomers of C-hydroxycarborane from the corresponding amines via diazotization. The O-protonated C-hydroxycarboranes were characterized using the NMR spectrum measurements. Attempts at generating of carboranyl carbocations were carried out by the solvolyses of C-tosylates and C-triflates, as well as by treatment with superacids. Anchimeric assistance of both homoconjugative and hyperconjugative substituents was also investigated, as demonstrated by a successful strategy devised for the solvolytic generation of a phenyl cation. However, we have not been able to chemically provide any evidence of carboranyl carbocations, although the carboranyl carbocation may be an intermediate in the decomposition of the C-carboranediazonium ion.  相似文献   

15.
Excited-state reaction paths and energy profiles of 5,6-dihydroxyindole (DHI), one of the elementary building blocks of eumelanin, have been determined with the approximated singles-and-doubles coupled-cluster (CC2) method. 6-Hydroxy-4-dihydro-indol-5-one (HHI) is identified as a photochromic species, which is formed via nonadiabatic hydrogen migration from the dangling OH group of DHI to the neighboring carbon atom of the six-membered ring. It is shown that HHI is a typical excited-state hydrogen-transfer (ESIHT) system. HHI absorbs strongly in the visible range of the spectrum. A barrierless hydrogen transfer in the (1)pipi* excited state, followed by barrierless torsion of the hydroxyl group, lead to a low-lying S(1)-S(0) conical intersection and thus to ultrafast internal conversion. This very efficient mechanism of excited-state deactivation provides HHI with a high degree of intrinsic photostability. It is suggested that the metastable photochemical product HHI plays an essential role for the photoprotective biological function of eumelanin.  相似文献   

16.
[reaction: see text] A unique new set of reactions has been observed in heterocyclic photochemistry. 2-Methyl-4,4-diphenyl-3,4-dihydropyrimidin-1(2H)-one has been synthesized and its photochemistry investigated. This compound has been found to lead to a rearranged, dimeric product arising from a unique bond-scission process.  相似文献   

17.
A new series of photocleavable protein cross-linking reagents based on bis(maleimide) derivatives of diaryl disulfides have been synthesised. They have been functionalised with cysteine and transient absorption spectra for the photolysis reaction have been recorded by using the pump-probe technique with a time resolution of 100 femtoseconds. Photolysis of the disulfide bond yields the corresponding thiyl radicals in less than a picosecond. There is a significant amount of geminate recombination, but some of the radicals escape the solvent cage and the quantum yield for photocleavage is 30 % in water.  相似文献   

18.
Thermoporometry is a relatively new method of characterising porous properties of nanostructured materials based on observation of solid–liquid phase transitions of materials confined in pores. It provides several advantages over the conventional characterisation methods, mercury porosimetry and gas sorption. The advantages include possibility of using short measurement times, non-toxic chemicals and wet samples. In addition, complicated sample preparation and specialised instruments are not required. Therefore, it has a great potential of becoming a widely utilised characterisation method, although its potential has not yet been widely realised. In recent years, there has been a significant increase in research activities regarding the method. In the second part of the review, results and conclusions of the recent studies about thermoporometry are surveyed and discussed focusing on the application of thermoporometry in extracting various structural information from the porous materials.  相似文献   

19.
Thermoporometry is a relatively new method of characterising porous properties of nanostructured materials based on observation of solid–liquid phase transitions of materials confined in pores. It provides several advantages over the conventional characterisation methods, mercury porosimetry and gas sorption. The advantages include possibility of using short measurement times, non-toxic chemicals and wet samples. In addition, complicated sample preparation and specialised instruments are not required. Therefore, it has a great potential of becoming a widely utilised characterisation method, although its potential has not yet been widely realised. In recent years, there has been a significant increase in research activities regarding the method. In the first part of the review, we introduce thermoporometry and review related results of the confinement effects on materials and their solid–liquid phase transition.  相似文献   

20.
The photochemistry of 9-xanthenyl radicals produced by pulse radiolysis of xanthene in halocarbon was studied by means of a successive laser flash photolysis in the presence and absence of oxygen. In deaerated solutions rapid (during 6 ns laser pulse) and permanent photobleaching due to chlorine atom transfer from solvents to the excited 9-xanthenyl radical was observed with quantum yields of 0.04 and 0.26 in 1,2-dichloroethane and CCl4, respectively. In the solutions containing oxygen, equilibrium between 9-xanthenyl radicals and peroxyl radicals was established and recovery of the photobleached 9-xanthenyl radicals was observed, which was accounted for by dissociation of peroxyl radicals. The whole reaction scheme of formation and decay of 9-xanthenyl radicals in CCl4 is discussed based on the kinetic simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号