首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The magnetism and work function Ф of Fe1-xGdx/Fe (001) films have been investigated using first-principles methods based on the density functional theory. The calculated results reveal that Gd doping on the Fe (001) surface would greatly affect the geometrical structure of the system. The restruction of the surface atoms leads to the transition of magnetic coupling between Gd and Fe atoms from ferromagnetic (FM) for 0.5 ≤x ≤ 0.75 to antiferromagnetic (AFM) for x = 1.0. For Fe1-xGdx/Fe (001) (x = 0.25, 0.5, 0.75, 1.0), the charge transfer from Gd to Fe leads to a positive dipole formed on the surface, which is responsible for the decrease of the work function. Moreover, it is found that the magnetic moments of Fe and Gd on the surface layer can be strongly influenced by Gd doping. The changes of the work function and magnetism for Fe1-xGdx/Fe (001) can be explained by the electron transfer, the magnetic coupling interaction between Gd and Fe atoms, and the complex surface restruction. Our work strongly suggests that the doping of the metal with a low work function is a promising way for modulating the work function of the magnetic metal gate.  相似文献   

2.
We have preformed systematical ab initio studies of the structural and electronic properties of short-period Si1-xⅣx/Si (x = 0.125, 0.25, 0.5, Ⅳ=Ge, Sn) superlattices (SLs) grown along the [001] direction on bulk Si. The present calculations reveal that the Si0.875Ge0.125/Si, Si0.75Ge0.25/Si and Si0.875Sn0.125/Si are the F-point direct bandgap semiconductors. The technological importance lies in the expectation that the direct gap Si1-xⅣx/Si SLs may be used as components in integrated optoelectronic devices, in conjunction with the already well-established and highly advanced silicon technology.  相似文献   

3.
Adsorption and reaction of CO on two possible terminations of SrTiO3 (100) surface are investigated by the first-principles calculation of plane wave ultrasoft pseudopotentiai based on the density function theory. The adsorption energy, Mulliken population analysis, density of states (DOS) and electronic density difference of CO on SrTiO3 (100) surface, which have never been investigated before as far as we know are performed. The calculated results reveal that the Ti-CO orientation is the most stable configuration and the adsorption energy (0.449eV) is quite small. CO molecules adsorb weakly on the SrTiO3 (100) surface, there is predominantly electrostatic attraction between CO and the surface rather than a chemical bonding mechanism.  相似文献   

4.
The atomic and electronic structures of T1 and In on Si(111) surfaces are investigated using the firstprinciples total energy calculations. Total energy optimizations show that the energetically favored structure is 1/3 ML T1 adsorbed at the T4 sites on Si(111) surfaces. The adsorption energy difference of one T1 adatom between (√3 × √3) and (1 × 1) is less than that of each In adatom. The DOS indicates that TI 6p and Si 3p electrons play a very important role in the formation of the surface states. It is concluded that the bonding of TI adatoms on Si(111) surfaces is mainly polar covalent, which is weaker than that of In on Si(111). So T1 atom is more easy to be migrated than In atom in the same external electric field and the structures of T1 on Si(111) is prone to switch between (√3 × √3) and (1 × 1).  相似文献   

5.
The surface structure and electronic property of InP(001)-(2 ×1)S surface under S-rich condition are investigated based on first-principles simulations. The analyses of phase transition show that the 3B model is the most stable structure and the S-S dimer is difficult to form. The geometry of the 3B structure agrees well with the experiments. It is also found that the 3B structure has a good passivation with a band gap of about 1.24eV. The results indicate that the 3B structure is the best candidate for the sulfur-rich InP(001)(2 × 1)A phase.  相似文献   

6.
The chemisorption of one monolayer of Fe atoms on a Au-passivated Si(001) surface is studied by using the self-consistent tight-binding linear muffin-tin orbital method. The Fe adatom chemisorption on an ideal Si(001) surface is also considered for comparison. The chemisorption energy and layer projected density of states for a monolayer of Fe atoms on Au-passivated Si(001) surface are calculated and compared with that of the Fe atoms on an ideal Si(001) surface. The charge transfer is investigated. It is found that the most stable position is at the fourfold hollow site for the adsorbed Fe atoms, which might sit below the Au surface. Therefore there will be a Au-Fe mixed layer at the Fe/Au-Si(100) interface. It is found that the adsorbed Fe atoms cannot sit below the Si surface, indicating that a buffer layer of Au atoms may hinder the intermixing of Fe atoms and Si atoms at the Fe/Au-Si(001) interface effectively, which is in agreement with the experimental results.  相似文献   

7.
In this article, a computational analysis has been performed on the structural properties and predominantly on the electronic properties of the α-CuSe (klockmannite) using density functional theory. The studies in this work show that the best structural results, in comparison to the experimental values, belong to the PBEsol-GGA and WC-GGA functionals. However, the best results for the bulk modulus and density of states (DOSs) are related to the local density approximation (LDA) functional. Through utilized approaches, the LDA is chosen to investigate the electronic structure. The results of the electronic properties and geometric optimization of α-CuSe respectively show that this compound is conductive and non-magnetic. The curvatures of the energy bands crossing the Fermi level explicitly reveal that major charge carriers in CuSe are holes, whose density is estimated to be 0.86×1022 hole/cm3. In particular, the Fermi surfaces in the first Brillouin zone demonstrate interplane conductivity between (001) planes. Moreover, the charge carriers among them are electrons and holes simultaneously. The conductivity in CuSe is mainly due to the hybridization between the d orbitals of Cu atoms and the p orbitals of Se atoms. The former orbitals have the dual nature of localization and itinerancy.  相似文献   

8.
The effect of In doping on the electronic structure and optical properties of Sr2 TiO4 is investigated by a firstprinciples calculation of plane wave ultrasoft pseudopotentials based on density functional theory. The calculated results reveal that corner-shared TiO6 octahedra dominate the main electronic properties of Sr2TiO4 and the covalency of the Ti-O(1) bond in the ab plane is stronger than that of the Ti-O(2) bond along the c-axis. After In doping, there is a little lattice expansion in Sr2In0.125 Ti0.875 O4 and the interaction between the Ti-O bond near the impurity In atom is weakened. The binding energies of Sr2TiO4 and Sr2In0.125Ti0.875O4 estimated from the electronic structure calculations indicate that the crystal structure of Sr2In0.125 Ti0.875 O4 is still stable after doping, but its stability is lower than that of undoped Sr2TiO4. Moreover, the valence bands (VBs) of the Sr2In0.125Ti0.875O4 system consist of O 2p and In 4d states, and the mixing of O 2p and In 4d states makes the top VBs shift significantly to high energies, resulting in visible light absorption. The adsorption of visible light is of practical importance for the application of St2 TiO4 as a photocatalyst.  相似文献   

9.
Adsorption of ordered (2 × 2) arrays of Nb4 clusters on the insulating surface of NaCI(100) is studied by the first-principles calculations within the density functional theory. The calculations on the relaxed geometries and cohesive energies show that both the tetrahedron and quadrangle-Nb4 can be stably adsorbed on this substrate, which may have important applications. The adsorption of quadrangle-Nb4 on the NaCl(100) surface is more stable than that of tetrahedron-Nb4. Both the Nb4 clusters studied and a single Nb atom prefer the top site of the Cl atom in the NaCl(100) surface. Electronic structure analysis suggests that the interactions between the Nb4 clusters and the substrate are weak.  相似文献   

10.
谭昌龙  蔡伟  田晓华 《中国物理》2006,15(11):2718-2723
In this paper a first-principles study of the electronic structure and stability of B2 TiDFT TiNiHf 电子结构 马氏体转化温度 平面波DFT, TiNiHf, electronic structure, martensitic transformation temperatureProject supported by the National Natural Science Foundation of China (Grant No 50471018).3/3/2006 12:00:00 AM6/7/2006 12:00:00 AMIn this paper a first-principles study of the electronic structure and stability of B2 Ti1-xNiHfx (x = 0.2, 0.4, 0.6) and B19′ Ti1-xNiHfx(x = 0, 0.5) alloys is presented. The calculations are performed by the plane-wave pseudopotential method in the framework of the density functional theory with the generalized gradient approximation. This paper calculates the lattice parameters, density of states, charge density, and heats of formation. The results show that the electronic structure and stability of B2 Ti1-xNiHfx change gradually with Hf content. However, Hf content has little effect on the electronic structure and stability of B19′ Ti1-xNiHfx. The mechanism of the effect of Hf content on martensitic transformation temperature of TiNiHf alloys is studied from the electronic structure.  相似文献   

11.
The adsorption of one monolayer S atoms on ideal Si(100) surface is studied by using the self-consistent tight binding linear muffon-tin orbital method. Energies of adsorption systems ors atoms on different sites are calculated. It is found that the adsorbed S atoms are more favorable on B1 site (bridge site) with a distance 0.131 nm above the Si surface. The .S, Si mixed layer might exist at S/Si(100) interface. The layer projected density of states are calculated and compared with that of the clean surface. The charge transfers are also investigated.  相似文献   

12.
伍冬兰  谢安东  余晓光  万慧军 《中国物理 B》2012,21(4):43103-043103
The equilibrium structure of flue gas SO2 is optimized using the density functional theory (DFT)/B3P86 method and CC-PV5Z basis. The result shows that it has a bent (C2v, X1A1) ground state structure with an angle of 119.1184°. The vibronic frequencies and the force constants are also calculated. Based on the principles of atomic and molecular reaction statics (AMIIS), the possible electronic states and reasonable dissociation limits for the ground state of SO2 molecule are determined. The potential functions of SO and 02 are fitted by the modified Murrell-Sorbie+c6 (M-S+c6) potential function and the fitted parameters, the force constants and the spectroscopic constants are obtained, which are all close to the experimental values. The analytic potential energy function of the SO2 (X1A1) molecule is derived using the many-body expansion theory. The contour liues are constructed, which show the static properties of SO2 (XIA1), such as the equilibrium structure, the lowest energies, the most possible reaction channel, etc.  相似文献   

13.
The geometries and electronic properties of Fe(MgO)n are systematically investigated by the density functional theory. The results show that the doped Fe atom is prone to bond with the O atom, and Fe almost does not disturb the frame of (MgO)n. The second-order energy difference, the fragmentation energies and the electron amnities show that Fe(MgO)4 and Fe(MgO)6 possess relatively higher stabilities. The HOMO-LUMO gaps of Fe(MgO)n decrease obviously as compared with (MgO)n. Almost equal unpaired electrons of the 3d state of the Fe atom in Fe(MgO)n result in a nearly equal magnetic moment of Fe(MgO)n.  相似文献   

14.
The structural, electronic, and optical properties of cubic perovskite NaMgF3 are calculated by plane-wave pseudopo- tential density functional theory. The calculated lattice constant a0, bulk modulus B0, and the derivative of bulk modulus B~ are 3.872/~, 78.2 GPa, and 3.97, respectively. The results are in good agreement with the available experimental and theo- retical values. The electronic structure shows that cubic NaMgF3 is an indirect insulator with a wide forbidden band gap of Eg = 5.90 eV. The contribution of the different bands is analyzed by total and partial density of states curves. Population analysis of NaMgF3 indicates that there is strong ionic bonding in the MgF2 unit, and a mixture of ionic and weak covalent bonding in the NaF unit. Calculations of dielectric function, absorption coefficient, refractive index, electronic energy loss spectroscopy, optical reflectivity, and conductivity are also performed in the energy range 0 to 70 eV.  相似文献   

15.
The equilibrium geometries, relative stabilities, and electronic properties of Ca2Sin (n = 1-11) clusters have been systematically investigated by using the density function theory at the 6-311G (d) level The optimized geometries indicate that the most stable isomers have three-dimensional structures for n = 3-11. The electronic properties of Ca2 Sin (n = 1-11) dusters axe obtained through the analysis of the natural charge population, natural electron configuration, vertical ionization potential, and vertical electron affinity. The results show that the charges in corresponding Ca2Sin clusters transfer from the Ca atoms to the Sin host. Based on the obtained lowest-energy geometries, the size dependence of cluster properties, such as averaged binding energies, fragmentation energies, second-order energy differences, HOMO- LUMO gaps and chemical hardness, are deeply discussed.  相似文献   

16.
张辉  张国英  王瑞丹  钟博 《中国物理》2006,15(3):641-644
An atomic group model of the disordered binary alloy Rhx-Pt1-x has been constructed to investigate surface segregation. According to the model, we have calculated the electronic structure of the Rhx-Pt1-x alloy surface by using the recursion method when O atoms are adsorbed on the Rhx-Pt1-x (110) surface under the condition of coverage 0.5. The calculation results indicate that the chemical adsorption of O changes greatly the density of states near the Fermi level, and the surface segregation exhibits a reversal behaviour. In addition, when x 〈 0.3, the surface on which O is adsorbed displays the property of Pt; whereas when x 〉 0.3 it displays the property of Rh.  相似文献   

17.
18.
The structure, electronic and magnetic properties of HoSin(n= 1 - 12, 20) clusters have been widely investigated by first-principles calculation method based on density flmctional theory (DFT). From our calculation results, we find that for HoSin(n=1- 12) clusters except n = 7.10, the most stable structures are a replacement of Si atom in the corresponding pure Sin+1 clusters by Ho atom. The doping of Ho atom makes the stability of Si clusters enhance remarkably, and HoSin(n = 2, 5, 8, 11) clusters are more stable than their neighboring clusters. The magnetic moment of Ho atom in HoSin (n = 1 - 12, 20) clusters mainly comes from of electron of tto, and never quenches.  相似文献   

19.
徐国亮  谢会香  袁伟  张现周  刘玉芳 《中国物理 B》2012,21(5):53101-053101
In the present work,we adopt the ccsd/6-31g(d) method to optimize the ground state structure and calculate the vibrational frequency of the Si2N molecule.The calculated frequencies accord satisfactorily with the experimental values,which helps confirm the ground state structure of the molecule.In order to find how the external electric field affects the Si2N molecule,we use the density functional method B3P86/6-31g(d) to optimize the ground state structure and the time-dependent density functional theory TDDFT/6-31g(d) to study the absorption spectra,the excitation energies,the oscillator strengths,and the dipole moments of the Si2N molecule under different external electric fields.It is found that the absorption spectra,the excitation energies,the oscillator strengths,and the dipole moments of the Si2N molecule are affected by the external electric field.One of the valuable results is that the absorption spectra of the yellow and the blue-violet light of the Si2N molecule each have a red shift under the electric field.The luminescence mechanism in the visible light region of the Si2N molecule is also investigated and compared with the experimental data.  相似文献   

20.
Lead-free (Na0.5K0.5)NbO3-xmol% ScTaO4 (x=0-1.5) ceramics are prepared using the conventional solid-state reaction method and their properties are investigated in detail. The results indicate that the piezoelectric properties and density are improved by the introduction of ScTaO4. Due to the high orthorhombic-tetragonal phase transition temperature TO-T (around 200°C), stable piezoelectric properties against temperature are obtained. In a wide temperature range of 15-160°C, kp of the (Na0.5K0.5)NbO3-0.5mol% ScTaO4 ceramic remains almost unchanged and d31 increases slightly from 59pC/N to 71pC/N. The deliquescent problem is effectively solved by the addition of ScTaO4. The piezoelectric properties of ScTaO4 modified (Na0.5K0.5)NbO3 ceramics show no obvious reduction and dielectric loss increases slightly after 120h of immersion. From the analysis, it is suggested that the density is an important factor that improves the humidity resistance of the specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号