首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dynamic interfacial tensions for surfactant mixtures at liquid-liquid interfaces were obtained with a drop volume tensiometer. The surfactants tested were Triton X-100, palmitic acid, and Span 80 at both the water-hexadecane and water-mineral oil interfaces. Two-surfactant mixtures were examined with the surfactants initially dissolved in different phases to minimize bulk-phase interactions. For concentrations below the CMC, it was found that the adsorption kinetics of palmitic acid and Triton X-100 mixtures were dominated by the latter surfactant. Apparent diffusion coefficients were obtained for Triton X-100 both in the absence and in the presence of palmitic acid. These values were largely insensitive to the presence of palmitic acid. For mixtures of Span 80 and Triton X-100, the adsorption kinetics were found to be influenced significantly by both surfactants. In this case, relative changes in surfactant concentrations affected the dynamic interfacial tension of the mixed system. A previously proposed multicomponent adsorption model described the dynamic interfacial tension adequately at low concentrations of Triton X-100, when desorption could be neglected. At higher concentrations, modifications were needed to account for solubilization into the oil phase. These corrections allowed the model to describe the long time adsorption quite well. However, predicted values of short time interfacial tensions were overestimated, likely due to a synergistic interaction of the two surfactants. Copyright 1999 Academic Press.  相似文献   

2.
疏水缔合共聚物与表面活性剂的界面相互作用   总被引:1,自引:0,他引:1  
采用界面张力弛豫法研究了疏水缔合聚合物聚丙烯酰胺/2-乙基己基丙烯酸酯[P(AM/2-EHA)]在正辛烷-水界面上的扩张粘弹性质, 考察了不同类型表面活性剂十二烷基硫酸钠(SDS)、聚环氧乙烯醚(Tx-100)和十六烷基三甲基溴化铵(CTAB)对其界面扩张性质的影响. 研究发现, 界面上的表面活性剂分子可以与聚合物的疏水嵌段形成类似混合胶束的聚集体, 表面活性剂分子与聚集体之间存在快速交换. 这种弛豫过程的特征时间远比分子在体相与界面间的扩散交换时短. 当界面面积增大时, 上述混合胶束中的表面活性剂分子能快速释放, 在界面层内原位快速消除界面张力梯度, 从而大大降低界面扩张弹性. 界面上的CTAB分子与聚合物链节上的负电中心通过较强的电荷吸引作用形成复合物. 当界面面积增大时, 上述混合胶束中的CTAB分子释放较慢, 界面张力梯度较大. 非离子表面活性剂Tx-100分子量较大, 扩散速率较慢, 它在界面上与聚集体间的交换比阴离子表面活性剂SDS慢, 其特征时间约为0.9 s.  相似文献   

3.
The adsorption kinetics of Triton X-100 and Triton X-405 at solution/air and solution/hexane interfaces is studied by the recently developed fast formed drop technique. The dynamic interfacial tension of Triton X-100 and Triton X-405 solutions against hexane has been measured without preequilibration of the water and oil phases. It is found that the dynamic interfacial tension of Triton X-100 solutions passes through a minimum. This strange behavior is attributed to partial solubility of the surfactant in hexane. Such minima of the dynamic interfacial tension of Triton X-405 solutions have not been observed, which correlates well with the solubilities of both surfactants in hexane reported in the literature. The dynamic surface tension of solutions of both surfactants and the dynamic interfacial tension of Triton X-405 solutions are interpreted by the Ward and Tordai model for diffusion controlled adsorption. It is shown that proper interpretation of the experimental data depends on the type of isotherm used. More consistent results are obtained when the Temkin isotherm is used instead of the Langmuir isotherm. The results obtained with Triton X-100 at the solution/air interface confirm that the adsorption of this surfactant occurs under diffusion control. The adsorption of Triton X-405 at solution/air and at solution/hexane interfaces seems to occur under diffusion control at short periods of time, but under mixed (diffusion-kinetic) control at long periods of time. A hypothesis is drawn to explain this phenomenon by changes in the shape of the large hydrophilic heads of Triton X-405 molecules. Copyright 2000 Academic Press.  相似文献   

4.
A molecularly detailed self-consistent field (SCF) approach is applied to describe a sessile hydrocarbon droplet placed at the air-water interface. Predictions of the contact angle for macroscopic droplets follow from using Neumann's equation, wherein the macroscopic interfacial tensions are computed from one-gradient calculations for flat interfaces. A two-gradient cylindrical coordinate system with mirror-like boundary conditions is used to analyse the three dimensional shape of the nano-scale oil droplet at the air-water interface. These small droplets have a finite value of the Laplace pressure and concomitant line tension. It has been calculated that the oil-water and oil-vapour interfacial tensions are curvature dependent and increase slightly with increasing interfacial curvature. In contrast, the line tension tends to decrease with curvature. In all cases there is only a weak influence of the line tension on the droplet shape. We therefore argue that the nano-scale droplets, which are described in the SCF approach, are representative for macroscopic droplets and that the method can be used to efficiently generate accurate information on the spreading of oil droplets at the air-water interface in molecularly more complex situations. As an example, non-ionic surfactants have been included in the system to illustrate how a molecularly more complex situation will change the wetting properties of the sessile drop. This short forecast is aimed to outline and to stress the potential of the method.  相似文献   

5.
A novel, growing drop technique is described for measuring dynamic interfacial tension due to sorption of surface-active solutes. The proposed method relates the instantaneous pressure and size of expanding liquid drops to the interfacial tension and is useful for measuring both liquid/gas and liquid/liquid tensions over a wide range of time scales, currently from 10 ms to several hours. Growing drop measurements on surfactant-free water/ air and water/octanol interfaces yield constant tensions equal to their known literature values. For surfactant-laden, liquid drops, the growing drop technique captures the actual transient tension evolution of a single interface, rather than interval times as with the classic maximum-drop-pressure and drop-volume tension measurements. Dynamic tensions measured for 0.25 mM aqueous 1-decanol solution/air and 0.02 kg/m3 aqueous Triton X-100 solution/dodecane interfaces show nonmonotonic behavior, indicating slow surfactant transport relative to the imposed rates of interfacial dilatation. The dynamic tension of a purified and fresh 6 mM aqueous sodium dodecyl sulfate (SDS) solution/air interface shows only a monotonic decrease, indicating rapid surfactant transport relative to the imposed rates of dilatation. Conversely, an aged SDS solution, naturally containing trace dodecanol impurities, exhibits dynamic tensions which reflect a superposition of the rapidly equilibrating SDS and the slowly adsorbing dodecanol.  相似文献   

6.
Cao Z  Lau C  Lu J 《The Analyst》2004,129(12):1262-1266
Here we report that all types of surfactant could be simply and sensitively determined, by directly quenching the chemiluminescence (CL) between luminol and NaIO4 in a basic solution containing one polyhydroxyl compound such as cyclodextrin (CD), glucose or glycerol. This specific quenching effect was attributed to the change of the microenvironment of the CL reaction, caused by the addition of various surfactants. Based on this fact, the potential use of this CL reaction was exemplified by the cationic surfactant CTMAB, anionic surfactant SDS and non-ionic surfactant Triton X-100. It was found that the measurable range of CTMAB, SDS and Triton X-100 were 4.0 x 10(-6)-4.0 x 10(-4) M by using a basic CD-luminol-NaIO4 CL reaction. With our simple setup, CTMAB, SDS and Triton X-100 were detectable at a concentration as low as 2 microM. Overall, this new CL reaction is quite promising for the post-column determination of surfactant mixtures.  相似文献   

7.
In our previous work (Macromolecules 2004, 37:2930), we found that the hydrophobic blocks of polyacrylamide modified with 2‐phenoxylethyl acrylate (POEA) and anionic surfactant sodium dodecyl sulfate (SDS) may form mixed associations at octane/water interface. However, the process involving the exchange of surfactant molecules between monomers and mixed associations in interface is so fast that we cannot obtain its characteristic time. In this article, the interfacial dilational viscoelastic properties of another hydrophobically associating block copolymer composed of acrylamide (AM) and a low amount of 2‐ethylhexyl acrylate (EHA) (<1.0 mol%) at the octane‐water interfaces were investigated by means of oscillating barriers method and interfacial tension relaxation method respectively. The influences of anionic surfactant SDS and nonionic surfactant Triton X‐100 on the dilational viscoelastic properties of 7000 ppm polymer solutions were studied. The results showed that the interaction between P(AM/2‐EHA) and SDS was similar to that of P(AM/POEA) and SDS. Moreover, we got the relaxation characteristic time of the fast process involving the exchange of s Triton X‐100 molecules between monomers and mixed associations.

We also found that the interfacial tension response of hydrophobically associating water‐soluble copolymers to the sinusoidal oscillation of interfacial area at low bulk concentration is as same as that of the typical surfactants: the interfacial tension decreases with the decrease of interfacial area because of the increase of interfacial active components. However, the interfacial tension increases with the decrease of interfacial area at 7000 ppm P(AM/2‐EHA), which is believed to be correlative with the structure of absorbed film. The results of another hydrophobically associating polymer P(AM/POEA) and polyelectrolyte polystyrene sulfonate (PSS) enhanced our supposition. The phase difference between area oscillation and tension oscillation has also been discussed considering the apparent negative value.  相似文献   

8.
表面活性剂双水相界面性质的研究   总被引:2,自引:0,他引:2  
表面活性剂双水相是指正、负离子表面活性剂混合水溶液在一定浓度及混合比 范围内,自发分离形成的两个互不相溶的水相。前文报道了将其作为一种新型萃取 体系,用于生物活性物质的分离。目前有关其相行为、化学物质和生物大分子的分 配方面已有较多研究,但未见两相之间界面化学性质研究的报道。表面活性剂双水 相的形成是一种奇特的相分离现象,两个稀水溶液(含水量可高达99%以上)互不 相溶、平衡共存,其界面结构和界面张力必有其特殊性。  相似文献   

9.
An experimental study on the electrophoretic mobility (μe) of polystyrene particles after the adsorption of non-ionic surfactants with different chain lengths is described. Two sulphate latexes with relatively low surface charge densities (3.2 and 4.8 μC cm−2) were used as solid substrate for the adsorption of four non-ionic surfactants, Triton X-100, Triton X-165, Triton X-305 and Triton X-405, each one with 9–10, 16, 30 and 40 molecules of ethylene oxide (EO), respectively. The electrophoretic mobility of the polystyrene–non-ionic surfactant complexes was studied versus the amount of adsorbed surfactant (Γ). The presence of non-ionic surfactant onto particles surface seems to produce a slight shifting of the slipping plane because the mobilities of the different complexes display a very small decreasing. The increase in the number of EO chains in the surfactant molecule seems to operate as a steric impediment which decreases the number of adsorbed large surfactant molecules. The electrophoretic mobilities of the latex–surfactant complexes with maximum adsorption were measured versus the pH and ionic strength of the dispersion. While the different complexes showed a similar qualitative behaviour compared with that of the bare latex against the pH, the adsorption of the surfactant reduces the typical maximum in the μe−log[electrolyte].  相似文献   

10.
After preconcentration of surfactants at the HMDE, four tensammetric signals were examined to establish the optimum conditions for the determination of ultratraces of surfactants in alkaline, neutral and acidic media. The signals studied were: (1) the depth of the depression occuring on the curves obtained in a.c. fundamental tensammetry; and (2–4) the height of the peaks on the curves obtained in a.c. fundamental tensammetry, a.c. second-harmonic tensammetry and differential pulse tensammetry, respectively. The lowest detection limits found for Triton X-100 and a polyethylene glycol (PEG-4000) were 10 and 2 μg dm-3, respectively. Traces of surfactants found in supporting electrolytes (ca. 25 μg dm-3) gave desorption peaks at potentials around ?1 V. These contaminants had no significant effect on the peaks on Triton X-100 and PEG-4000 and they affected the SDS peak markedly. The reproducibility of the results obtained for SDS was poorer than for Triton or PEG.  相似文献   

11.
赵振国  顾惕人 《化学学报》1987,45(7):645-650
测定了15℃和30℃时炭黑自水和环己烷中吸附非离子型表面活性剂TritonX-100和Triton X-305的等温线;计算了吸附过程的标准热力学函数;测定了石墨/水/环己烷和石墨/水/空气的接触角与表面活性剂浓度的关系, 分析所得结果,可得结论:在炭黑/水或石墨/水界面上,Triton型表面活性分子形成单分子吸附层,分子以憎水的iso-C8H17C6H4基团附着在表面,而以亲水的聚氧乙烯链伸入水相的方式取向;在炭黑/环已烷或石墨/环己烷界面上,分子是通过聚氧乙烯链吸附到表面上的,当浓度增加时分子在表面可能通过聚氧乙烯链间的相互作用而发生聚集,即可能形成表面反式胶团。  相似文献   

12.
This article aims to compare the interfacial activities of different kinds of surfactants in the same oil/water system. The anionic surfactants of alkylbenzene sulfonates, the polyoxyethylenated nonionic surfactants, the cationic surfactants of alkyl trimethyl ammonium chlorides, and the zwitterionic surfactants of alkyl hydroxyl sulfobetaines were used, and the interfacial tensions of the surfactant solutions against kerosene at different NaCl concentrations were measured. It is found that the interfacial activities of the alkylbenzene sulfonates are high and ultralow interfacial tensions (<0.01 mN/m) can be obtained at proper salinities. While, the nonionic surfactants have relatively low interfacial activities and the minimum tensions are around 0.01 mN/ms. The salinity scanning curves of the alkylbenzene sulfonates and nonionic surfactants decrease first, then increase, showing their interfacial activities can be changed by the salinity effectively. The cationic and zwitterionic surfactants have very low interfacial activities, of which all the tensions are higher than 0.1 mN/ms and are hard to be changed by the salinity. The experimental results may have important reference values for enhanced oil recovery.  相似文献   

13.
The adsorption of carboxymethylcellulose (CMC) in the presence of the surfactants: anionic SDS, nonionic polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether (Triton X-100) and their mixtures SDS/polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether with different molar ratios (1:1; 1:3 and 3:1) from the electrolyte solutions (NaCl, CaCl2) on the manganese dioxide surface (MnO2) was studied. In every measured system the increase of CMC adsorption in the presence of surfactants was observed. This increase was the smallest in the presence of SDS, a bit larger in the presence of polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether and the largest when the mixtures of SDS/polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether were used. Among the measured mixtures, the mixture of SDS/polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether with the molar ratio 1:3 caused the largest increase of CMC adsorption amount. These results are a consequence of formation of complexes between the carboxymethylcellulose macromolecules and the surfactant molecules. In order to determine the electrokinetic properties of the system the surface charge density of MnO2 and the zeta potential measurements were conducted in the presence of the CMC macromolecules and the surfactants. The obtained data showed that the adsorption of CMC or CMC/surfactants complexes on the manganese dioxide surface strongly influences the structure of the electric double layer MnO2/electrolyte solution.  相似文献   

14.
The kinetics of reduction of nitroxides including 4-hydroxy-TEMPO, 4-methoxy-TEMPO and 4-hexanoyloxy-TEMPO, which are of different lipophilicities, by vitamin C in cationic, non-ionic and anionic micelles, i.e. CTAB, Triton X-100 and SDS, respectively, have been studied by FSR spectroscopy by a stopped-flow technique. A mechanism for the reaction conducted in micelles is proposed and the rate constants for the elementary reactions are evaluated. It is found that the rates of single electron transfer reactions involving the nitroxides are dependent on the nature of the micelle and the lipophilicity of the nitroxide. The rates are increased in CTAB, decreased in SDS, whereas unaffected in Triton X-100. And the greater the lipophilicity of the nitroxide, the more pronounced the rate variation. As high as a 3600-fold increase in the rate was observed for 4-hexanoyloxy-TEMPO in CTAB over that in SDS. The micellar effects are rationalized on the basis of analysis of parameters and line shape of the ESR spectra for the nitroxides in the micelles.  相似文献   

15.
Interfacial tension of water–CO2 interface was measured by pendant drop method in the presence of a surfactant of various concentrations. The surfactants used were three surfynols which are non-ionic blanched hydrocarbon with different length of the alkyl side chain. Prior to the interfacial tension measurements, the solubility of the surfynols in CO2 were determined from cloud point method. The measured interfacial tensions indicated that an addition of small amount surfactant did reduce the interfacial tension. The interfacial activities of surfactants were evaluated from the slope of the interfacial tension reduction curve against the surfactant concentration and rationalized in terms of the molecular natures such as hydrophobic alkyl chain length.  相似文献   

16.
Equilibrium interfacial tension measurements at 25.0 °C of the toluene + water system with two widely used surfactants, octylphenol decaethylene glycol ether (Triton X-100) and cetyl trimethyl ammonium bromide (CTAB) having concentrations much lower than their CMC were performed. According to the obtained parameters from the Szyszkowski equation, Triton has higher adsorption tendency than of CTAB. The results obtained for surfactants mixtures are analyzed by the theory of non-ideal interactions in binary mixtures (NIBMs) and the interfacial composition and the interaction parameter in the mixed adsorbed monolayer are determined. The attractive interaction shows a maximum value at nearly equal surfactants bulk mole fraction. The synergism is achieved for Triton bulk mole fractions of 0.30 and higher, and the highest degree of synergism (40.6%) is found for the bulk mole fraction of 0.52 with the lowest investigated constant interfacial tension of 28.0 mN m−1. A correlation was developed for variation of the interaction parameter with bulk mole fraction.  相似文献   

17.
In this study, we investigate structural transitions of tetraethylene glycol monohexadecyl ether (C(16)E(4)) in D(2)O as a function of shear flow and temperature. Via a combination of rheology, rheo-small-angle neutron scattering and rheo-small-angle light scattering, we probe the structural evolution of the system with respect to shear and temperature. Multi-lamellar vesicles, planar lamellae, and a sponge phase were found to compete as a function of shear rate and temperature, with the sponge phase involving the formation of a new transient lamellar phase with a larger spacing, coexisting with the preceding lamellar phase within a narrow temperature-time range. The shear flow behavior of C(16)E(4) is also found to deviate from other nonionic surfactants with shorter alkyl chains (C(10)E(3) and C(12)E(4)), resembling to the C(16)E(7) case, of longer chain.  相似文献   

18.
The presence of microdomains, called lipid rafts, in biological membranes is usually explained by lateral segregation between specific lipids and proteins. These rafts present similarities with the membrane domains isolated by their non-ionic detergent-resistance at 4 degrees C. They are enriched in sphingomyelin and cholesterol as compared with the outer leaflet of eukaryotic cell membranes. To understand the role played by the lipids enriched in rafts in their resistance to solubilization by detergents, the interactions between these lipids and the non-ionic detergent Triton X-100 were studied by using different lipid monolayers at the air-water interface. The influence of Triton X-100 on the Langmuir isotherms (i.e. surface pressure/area isotherms) of monolayers containing sphingomyelin and cholesterol at different mole ratios was analyzed and the results were compared with the influence of Triton X-100 on monolayers containing a phosphatidylcholine bearing a saturated and an unsaturated fatty acid (i.e. palmitoyloleylphosphatidylcholine) and cholesterol. This phosphatidylcholine was chosen since the phosphatidylcholines present in rafts isolated from bovine kidney could contain about 50% of saturated fatty acids. Triton X-100 induces an increase in the condensing effect observed as compared with ideal mixture of phospholipid/cholesterol. Triton X-100-induced changes in the morphology of the monolayers were visualized by Brewster angle microscopy, which confirmed the differences of behavior observed by analyzing the isotherms.  相似文献   

19.
A method is described for the determination of non-ionic surfactants in the concentration range 0.05–2 mg l-1.Surfactant molecules are extracted into 1,2-dichlorobenzene as a neutral adduct with potassium tetrathiocyanatozincate(II) and the determination is completed by atomic absorption spectrometry. With a 150-ml water sample, the limit of detection is 0.03 mg l-1(as Triton X-100).The method requires a single phase separation step, is applicable, without modification, to fresh, estuarine and sea-water samples and is relatively free from interference by anionic surfactants; the presence of up to 5 mg l-1 of anionic surfactant (as LAS) introduces an error of no more than 0.07 mg l-1 (as Triton X-100) in the apparent non-ionic surfactant concentration.  相似文献   

20.
A capillary pressure tensiometer has been set up to measure the dilational surface viscoelasticity in liquid-air and liquid-liquid surfactant systems, according to the oscillating drop/bubble technique. A specific model which allows the dilational surface viscoelasticity to be inferred from the acquired pressure data is proposed and the critical points concerning the experimental procedure and the data interpretation are discussed. In order to optimize the method, side measurements utilizing the same tensiometer to evaluate equilibrium interfacial tensions and the system compressibility are coupled to this technique. Some nonionic surfactants, polyoxyethylene glycol ethers (C(i)EO(j)) and alkyl dimethyl phosphine oxide (C(12)DMPO), at water-air and water-hexane interfaces have been investigated by this technique. The measured dynamic dilational viscoelasticities are compared with the predictions of theoretical models which consider different adsorption mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号