首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The melting behavior of isothermally crystallized PET has been studied using linear heating in a differential scanning calorimeter (DSC). Variables such as crystallization temperature, crystallization time, heating rate, and average molecular weight are the main focus of the study. On the basis of several experimental techniques, a correlation of the melting behavior of PET with the amount of secondary crystallization was found to exist. It was observed that the triple melting of PET is a function of programmable DSC variables such as crystallization temperature, crystallization time, and heating rate. However, in testing the hypothesis that there was a correlation between melting endotherms and secondary crystallization inside spherulites, it was found necessary to use a DSC-independent variable in order to enhance the observed effects. Therefore, on the basis of a crystallization model that involves secondary branching along the edges of parent lamellar structures, it was speculated that an increase in the average molecular weight could affect the triple melting of PET due to an increase of rejected portions of the macromolecules. It was found that the second melting endotherm increased, apparently, at the expense of the third one as the average molecular weight was increased. The second melting endotherm was also found to correlate proportionally with the amount of secondary crystallization inside spherulites. The results support a model of crystallization which basically consists of parent crystals and at least one population of secondary, probably metastable, crystals. This latter structural component must involve excluded portions of the macromolecules that did not crystallize during the isothermal crystallization period of the parent crystals. An increase of molecular weight gives rise to a higher entanglement density which in turn increases the fraction of initially rejected chain sections and therefore the amount of secondary crystallization. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1757–1774, 1997  相似文献   

2.
The study of the nonisothermal crystallization behavior of layered silicates micro‐ and nano‐biocomposites based on poly(butylene adipate‐co‐terephthalate) (PBAT), a biodegradable copolyester, has been carried out with different theoretical models. They were applied and developed with the aim to describe and better understand the influence of the layered silicates dispersion on crystallization. The nucleation efficiency of the layered silicates has been demonstrated with the use of the “Modified Avrami model,” thanks to the higher crystallization rate parameter, Zc, and of the lower crystallization half‐time, t1/2, compared to the neat matrix. The crystallization activation energies, Ea, calculated from “Kissinger's model” have shown that layered silicates have a negative effect on the crystallite growth process. Thus, these analyses have shown that layered silicates have a double effect on the crystallization process. These two opposites' phenomena depend on the dispersion quality and are more pronounced for the intercalated nano‐biocomposites. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1503–1510, 2007  相似文献   

3.
With time-resolved small-angle neutron scattering (TR-SANS), the crystallization kinetics of polyethylene from deuterated o-xylene solutions upon a temperature jump have been investigated. On the basis of a morphological model of coexisting lamellar stacks and coil chains in solution, experimental data have been quantitatively analyzed to provide structural information, such as the lamellar long period, the lamellar crystal thickness, the thickness of the amorphous layers between lamellae, the degree of crystallinity, and the crystal growth rate at various degrees of undercooling. The viability of TR-SANS for studying polymer crystallization is demonstrated through the consistency of these measurements and well-established knowledge of polyethylene crystallization from xylene solutions. One unique feature of this experimentation is that both the growth of lamellar crystals and the condensation of coil chains from solution are monitored simultaneously. The ratio of the crystal growth to the chain consumption rate decreases rapidly with a decreasing degree of undercooling. The Avrami analysis suggests that the growth mechanism approaches two-dimensional behavior at higher temperatures, and this is consistent with the observation of an increasing ratio of the sharp-surface area to the bulk crystal growth rate with temperature. The limitations, possible remedies, and potentials of TR-SANS for studying polymer crystallization are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3133–3147, 2004  相似文献   

4.
A nucleation rate function is proposed for use in analyzing the overall crystallization kinetics of polymers. This function allows for the possibility that the nucleation rate varies substantially during the crystallization. This feature is particularly useful in analyzing nonisothermal crystallization, but it can be used to analyze isothermal crystallization as well. The nucleation rate function was used in the derivation of a modified transformation kinetics equation of the Avrami type. The modified Avrami equation was found to be suitable for kinetics analysis for the data obtained from nonisothermal crystallization at rapid cooling rates. Kinetics parameters used to describe nonisothermal crystallization under rapid cooling rates are presented and discussed. These include crystallization induction time, plateau (crystallization) temperature, crystallization half-time, crystallization rate constant, Avrami index, and newly defined quantities called nucleation index, geometric index, and nucleation rate constant. The procedure used to obtain the nucleation rate constant and nucleation index for the nucleation rate function is described and illustrated by application to the analysis of the crystallization kinetics of polypropylene. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1077–1093, 1997  相似文献   

5.
We report the application of an ultrasonic shear wave reflection technique for the investigation of film formation and crystallization kinetics of one amorphous and two semicrystalline polychloroprene samples with different gel content. Both isothermal and temperature-dependent measurements of the complex dynamic shear modulus (G* = G′ + iG″) have been performed at a frequency of 5.32 MHz. The process of film formation during the evaporation of water is expressed by a stepwise increase of the shear modulus. For the semicrystalline samples a further increase, which is due to crystallization, can be observed. Film formation and crystallization are delayed for the sample with high gel content and its minor final modulus is explained by a lower degree of crystallinity. The time-dependent increase of the shear modulus due to the growth of spherulites has been analyzed by the Avrami equation combined with the Kerner model for the modulus of a two-phase composite (spherulites in an amorphous matrix). The dynamic shear modulus for the spherulites has been estimated by a model introduced by Halpin and Kardos. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2949–2959, 1998  相似文献   

6.
In situ Fourier transform infrared (FTIR) measurements were carried out to elucidate conformation changes occurring during the isothermal melt crystallization of poly(ethylene-2,6-naphthalate) (PEN). Based on the band assignments for the components of the amorphous, α-crystal form, and β-crystal form of PEN in film samples, the in situ data was analyzed in terms of the amorphous- and crystal-trans conformations. It was observed at a higher isothermal crystallization temperature that the formation of amorphous-trans conformations precedes the growth of crystals. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2741–2747, 1997  相似文献   

7.
Isothermal crystallization kinetics of a new sequential poly(ester amide) derived from glycine, 1,4‐butanediol, and adipic acid was investigated with differential scanning calorimetry and optical microscopy. The Avrami analysis was performed to obtain the kinetic parameters of primary and secondary crystallization. The experimental data indicate a heterogeneous nucleation with spherical growth geometry for the primary crystallization, whereas a linear growth within formed spherulites is characteristic of the last crystallization stages. The Lauritzen–Hoffman analysis was also undertaken to determine the different crystallization regimes, having estimated the corresponding nucleation constants. Temperature dependence of the normalized crystallization‐rate constants was tested with different theoretical equations. These allow an estimation of a temperature close to 90 °C for the maximum crystallization rate. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 903–912, 2003  相似文献   

8.
Classical kinetic theories of polymer crystallization were applied to isothermal crystallization kinetics data obtained by polarized optical microscopy (PLOM) and differential scanning calorimetry (DSC). The fitted parameters that were proportional to the energy barriers obtained allow us to quantitatively estimate the nucleation and crystal growth contributions to the overall energy barrier associated to the crystallization process. It was shown that the spherulitic growth rate energy barrier found by fitting PLOM data is almost identical to that obtained by fitting the isothermal DSC crystallization data of previously self‐nucleated samples. Therefore, we demonstrated that by self‐nucleating the material at the ideal self‐nucleation (SN) temperature, the primary nucleation step can be entirely completed and the data obtained after subsequent isothermal crystallization by DSC contains only contributions from crystal growth or secondary nucleation. In this way, by employing SN followed by isothermal crystallization, we propose a simple method to obtain separate contributions of energy barriers for primary nucleation and for crystal growth, even in the case of polymers where PLOM data are very difficult to obtain (because they exhibit very small spherulites). Comparing the results obtained with poly(p‐dioxanone), poly(ε‐caprolactone), and a high 1,4 model hydrogenated polybutadiene, we have interpreted the differences in primary nucleation energy barriers as arising from differences in nuclei density. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1478–1487, 2008  相似文献   

9.
The crystallization behavior of a new sequential polyester constituted by glycolic acid and 4‐hydroxybutyric acid has been studied under nonisothermal conditions. Nonisothermal melt crystallization has been followed by means of hot‐stage optical microscopy (HSOM), with experiments performed at different cooling rates. Two crystallization regimes have been found, which is in good agreement with previous isothermal studies and with the different spherulitic morphologies that were observed. The kinetics of both glass and melt crystallizations has also been studied by differential scanning calorimetry (DSC) and considering the typical Avrami, Ozawa, and Cazé analyses. Only the last gave Avrami exponents, which were in good agreement with those measured under isothermal conditions, suggesting a spherulitic growth with a predetermined nucleation. Isoconversional data of melt and glass nonisothermal crystallizations have been combined to obtain the Hoffman and Lauritzen parameters. Results again indicate the existence of two crystallization regimes with nucleation constants close to those deduced from isothermal DSC experiments. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 121–133, 2008  相似文献   

10.
The newly available, strictly uniform n-alkane, C246H494, has been crystallized from dilute solution. The rates of crystallization were followed by differential scanning calorimetry (DSC) as a function of temperature. Two pronounced rate inversions were registered. The dissolution temperatures of the crystals formed show a sharp discontinuity at the temperature of the rate minimum. From this it is inferred (reinforced by the precedent of previous work on C198H398) that a transition from extended to once folded crystallization is taking place at the temperature of the minimum. The methods by which the rate curves were constructed are laid out in step by step detail, leaving no possible doubt about the reality of the rate inversion. The rate inversion is attributed to “self-poisoning,” and this concept is extended to embrace the wider issue of mutually interacting competition of possible phase variants (“polymorphs”) of which the extended and folded chain crystals represent one special example. In addition, some further effects are noted and discussed regarding solubility behavior. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1775–1791, 1997  相似文献   

11.
The crystallization behavior of biodegradable poly(butylene succinate) and copolyesters poly(butylene succinate‐co‐propylene succinate)s (PBSPS) was investigated by using 1H NMR, DSC and POM, respectively. Isothermal crystallization kinetics of the polyesters has been analyzed by the Avrami equation. The 2.2‐2.8 range of Avrami exponential n indicated that the crystallization mechanism was a heterogeneous nucleation with spherical growth geometry in the crystallization process of polyesters. Multiple melting peaks were observed during heating process after isothermal crystallization, and it could be explained by the melting and recrystallization model. PBSPS was identified to have the same crystal structure with that of PBS by using wide‐angle X‐ray diffraction (WAXD), suggesting that only BS unit crystallized while the PS unit was in an amorphous state. The crystal structure of polyesters was not affected by the crystallization temperatures, too. Besides the normal extinction crosses under the POM, the double‐banded extinction patterns with periodic distance along the radial direction were also observed in the spherulites of PBS and PBSPS. The morphology of spherulites strongly depended on the crystallization temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 420–428, 2007  相似文献   

12.
Crystallization of semicrystalline polymer films during drying has a significant effect on the rate of solvent removal. Understanding and controlling the crystallization kinetics is important in controlling residual solvent levels and drying kinetics. The degree of crystallinity of the poly(vinyl alcohol) films during multicomponent drying was investigated using Fourier transform infrared spectroscopy (FTIR). The 1141 cm?1 band is sensitive to the degree of crystallinity of the polymer and the growth of intensity of this band was monitored as drying progressed. The results from the FTIR studies were comparable to the results obtained from differential scanning calorimetry. Studies were conducted to test the effect of initial solvent composition (water–methanol mixture), drying temperature, and polymer molecular weight on the rate of crystallization and the final crystallinity of the films. An increase in initial methanol composition increased the crystallization rate but did not affect the final degree of crystallinity. An increase in drying temperature and decrease in polymer molecular weight increased the rate of crystallization as well as the final degree of crystallinity. Based on the experimental data, rate constants for crystallization kinetics were extracted from our previously developed model based on free volume theory. The experimental data and the simulation results showed good agreement. The ability of the free volume theory to illustrate the crystallization behavior validated the model and improved its capability. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 930–935, 2007  相似文献   

13.
The new fluctuation‐assisted mechanism for nucleation and crystallization in the isotactic polypropylene/poly(ethylene‐co‐octene) alloy has been studied. We found that the liquid–liquid phase separation (LLPS) had a dominant influence on the crystallization kinetics through the nucleation process. After LLPS, the nucleation of crystallization mainly occurred at the interface of the phase‐separated domains. It is because that the concentration fluctuations of the LLPS induced the motion of polymer chains and possibly some segmental alignment and/or orientation in the concentration gradient regions through interdiffusion, which could assist the formation of nuclei for crystallization. In other words, the usual nucleation energy barrier could be overcome (or at least partially) by the concentration fluctuation growth of LLPS in the unstable regions. This could be viewed as a new kind of heterogeneous nucleation and could be an addition to the regular nucleation and growth mechanism for crystallization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 166–172, 2009  相似文献   

14.
The isothermal crystallization behavior of a propylene/ethylene copolymer containing a clarifying additive has been studied in detail and compared with the equivalent unclarified grade. Differential scanning calorimetry was used to obtain crystallization exotherms for both the unclarified system and the clarified analogue. Avrami analysis of these data was then performed, using both linear and nonlinear data‐fitting techniques. Linear analysis revealed a change from a primary to a secondary crystallization process in the clarified system at about 50% relative crystallinity. Nonlinear techniques, however, led to more reliable estimates of the Avrami parameters and provided estimates of crystallization‐induction times. By combining the preceding with isothermal crystal‐growth‐rate data, the nucleation density in each material was obtained as a function of crystallization temperature. In the unclarified case, this fell exponentially with temperature. The nucleation density in the sorbitol‐clarified copolymer was 103–106 times greater than in the unclarified material, but decreased only slowly with increasing crystallization temperature throughout the temperature range investigated here. This final result appears entirely contradictory to previous morphological work in which a distinct morphological transition was observed at 128 °C and associated with a marked reduction in the nucleating efficiency of the sorbitol. Possible explanations for this apparent contradiction are considered. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2178–2189, 2002  相似文献   

15.
The isothermal melt and cold crystallization kinetics of poly(aryl ether ketone ether ketone ketone) are investigated by differential scanning calorimetry over two temperature regions. The Avrami equation describes the primary stage of isothermal crystallization kinetics with the exponent n ≈ 2 for both melt and cold crystallization. With the Hoffman–Weeks method, the equilibrium melting point is estimated to be 406 °C. From the spherulitic growth equation proposed by Hoffman and Lauritzen, the nucleation parameter (Kg) of the isothermal melt and cold crystallization is estimated. In addition, the Kg value of the isothermal melt crystallization is compared to those of the other poly(aryl ether ketone)s. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1992–1997, 2000  相似文献   

16.
This article is devoted to the cold crystallization of filled natural rubber with different types of filler such as carbon black, silica, and grafted silica. A large set of differential scanning calorimetry data is presented with various scanning rates, times, and temperatures of isothermal crystallization to display the factors affecting natural rubber (NR) crystallization. The crystallization kinetic measurements suggest that fillers can create a region with perturbed mobility where the kinetics of nucleation and/or growth are slowed down, the rest of the matrix being unperturbed. And, the final crystallization level indicates the existence of an excluded region for crystallization close to the filler surface. Furthermore, the presence of fillers appears less unfavorable to NR crystallization than chemical crosslinking. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 955–962, 2007  相似文献   

17.
For the first time, quantitative analyses of the crystallization kinetics, surface free energy of chain folding, and morphology in phenolic/poly(ϵ-caprolactone) (PCL) binary blends have been studied. The spherulite growth rate and the overall crystallization rate depend on the crystallization temperature and PCL content in the blend. In addition, the crystallization and melting temperatures of the PCL phase decrease with an increase in the phenolic content. An Avrami analysis shows that the addition of phenolic to PCL results in a decrease in the overall crystallization rate of the PCL phase. The presence of an amorphous phenolic phase results in a reduction in the rate of the spherulite growth of PCL. The surface free energy of folding increases with increasing phenolic content, and the crystal thickness of a phenolic/PCL blend, according to small-angle X-ray scattering (SAXS), is greater than that of pure PCL because of the increase in the surface free energy of chain folding and the decrease in the degree of supercooling. The observed domain size of the crystalline/amorphous phase (5.9 nm) from SAXS is also consistent with that from solid-state NMR (3–20 nm). All these results indicate that the crystallization ability of PCL decreases with increasing phenolic content in the blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 117–128, 2004  相似文献   

18.
Attapulgite (AT)‐reinforced poly(vinyl alcohol) (PVA) nanocomposite films were prepared by solution‐casting technique. The nonisothermal crystallization behaviors of PVA bulk and PVA/AT nanocomposites have been investigated by differential scanning calorimetry (DSC). It has been found that the uniformly dispersed AT nanorods in the matrix have great influence on the glass transition temperature and crystallization behavior of PVA matrix. The Jeziorny method has been employed to analyze the DSC data. The results show that Jeziorny method could describe this system very well. Comparing with the PVA bulk, PVA/AT nanocomposites have higher crystallinity Xt, shorter semicrystallization time t1/2, and higher crystallization rate constant Zc. It can be concluded that AT can be used as an effective nucleating agent and has effects on the growth of crystallites in the crystallization process of PVA matrix. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 534–540, 2006  相似文献   

19.
Temperature-modulated calorimetry, TMC, is used to evaluate the temperature region of metastability between crystallization and melting. While crystals like indium can be made to melt practically reversibly during a TMC cycle of low amplitude so that sufficient crystal nuclei remain unmelted, linear macromolecules cannot, because of their need to undergo molecular nucleation. Modulation amplitudes varying from ±0.2 to ±3.0 K are used to assess the temperature gap between the slow crystallization region and the melting of metastable crystals of poly(oxyethylene) (PEO) of molar mass 1500 Da. This low molar mass PEO serves as a model compound with a metastable gap of melting/crystallization that can be bridged by TMC with a large modulation amplitude. © 1997 John Wiley & Sons, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  • J Polym Sci B: Polym Phys 35 : 1877–1886, 1997  相似文献   

    20.
    Different crystallization kinetic models (Avrami and Tobin) have been applied to study the crystallization kinetics of virgin poly(butylene terephthalate) (PBT) and filled PBT systems under isothermal experimental conditions. The experimental data have been analyzed with a nonlinear, multivariable regression program. The kinetic parameters for the isothermal crystallization have been determined. The analysis results indicate that both models satisfactorily represent the isothermal crystallization kinetics. PBT crystallizes most slowly. The presence of nanoclays or nanofibers, added as fillers, enhances the crystallization rate of PBT composites. An analysis of the kinetic data with the Avrami and Tobin models has shown little change in the crystallization exponent compared with that of virgin PBT. The crystallization rate constant decreases with a rise in the temperature for the two models. This trend has been observed for similar polyester systems reported in the literature. The dispersion of the clay layers in the PBT nanocomposites has been characterized with wide‐angle X‐ray diffraction and transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1344–1353, 2007  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号