首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vinyl ether (VE)-based amphiphilic block copolymers with D-glucose residues as hydrophilicpendants were synthesized by CH_3 CH(OiBu)Cl/ZnI_2-initiated sequential living cationic copolymerization of3-O-(vinyloxy)ethyl-1, 2:5, 6-di-O-isopropylidene-D-glucofuranose (IGVE) and isobutyl VE (IBVE ) andsubsequent deprotection. The precursor block copolymers had a narrow molecular weight distribution(M_w/M_n~1.1) and a controlled segmental composition. The solubility characteristics of the amphiphiliccopolymer depended strongly on composition. Their solvent-cast thin films were examined, under atransmission electron microscope, and could be seen to exhibit various microphase-separated surfacemorphologies such as spheres, cylinders, and lamellae, depending on composition. The amphiphiliccopolymers with the appropriate segmental composition were found to form a stable monolayer at the air-water interface, which was successfully transferred onto a substrate by the Langmuir-Blodgett (LB)technique. The layered strucfure of the built-up LB films was controlled by blending the homopolymer.  相似文献   

2.
Scope and limitation of the vinyl ether polymerization initiated by NR4ClO4(KClO4;LiClO4)/CH3CHI-OR was discussed. Besides isobutyl vinyl ether (IBVE), N-vinylcarbazole (NVC) and 2-chloroethyl vinyl ether (CEVE) were initiated by NR4ClO4/CH3CHI-OR. These polymerizations exhibited the characteristics of a living polymerization. However, in order to observe narrow molar mass distribution NVC was initiated with CH3CHI-OR, without salts. Block copolymers were synthesized by the method of sequential monomer addition (NVC, IBVE, CEVE). The PCEVE segment was modified by nucleophilic substitution, which allowed the synthesis of amphiphilic block copolymers.  相似文献   

3.
A series of multifunctional malonate anions, [Na⊕?C(COOEt)2CH2]mC6H6?m(I; m = 2–4), were examined as polymer coupling agents for the living cationic polymerization of vinyl ethers initiated with the hydrogen iodide/zinc iodide (HI/ZnI2) initiating system. The bifunctional anion ( 2 ;I, m = 2), 1,4-[Na⊕?C(COOEt)2CH2]2C6H4, terminated living polymers of isobutyl vinyl ether (IBVE) (DP n = 10) almost quantitatively in toluene at ?15°C to give coupled living polymers with doubled molecular weights in 96% yield; the dianion 2 was dissolved in tetrahydrofuran containing 18-crown-6 for maintaining the solution homogeneous. The yield of the coupled polymers was increased with shorter living chains or in less polar solvents. Also by coupling via 2 , ABA block copolymers were obtained from living AB block polymers of IBVE and an ester-functionalized vinyl ether (CH2?CHOCH2CH2OCOCH3). Coupling of living poly(IBVE) with the trifunctional anion ( 3 ; I, m = 3) led to tri-armed polymers in 56% yield, whereas with the tetrafunctional version ( 4 ; I, m = 4), only three out of the four anions reacted to give another tri-armed polymer in 85% yield. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Living cationic polymerization of 2‐adamantyl vinyl ether (2‐vinyloxytricyclo[3.3.1.1]3,7decane; 2‐AdVE) was achieved with the CH3CH(OiBu)OCOCH3/ethylaluminum sesquichloride/ethyl acetate [CH3CH(OiBu)OCOCH3/Et1.5AlCl1.5/CH3COOEt] initiating system in toluene at 0 °C. The number‐average molecular weights (Mn's) of the obtained poly(2‐AdVE)s increased in direct proportion to monomer conversion and produced the polymers with narrow molecular weight distributions (MWDs) (Mw/Mn = ~1.1). When a second monomer feed was added to the almost polymerized reaction mixture, the added monomer was completely consumed and the Mn's of the polymers showed a direct increase against conversion of the added monomer. Block and statistical copolymerization of 2‐AdVE with n‐butyl vinyl ether (CH2?CH? O? CH2 CH2CH2CH3; NBVE) were possible via living process based on the same initiating system to give the corresponding copolymers with narrow MWDs. Grass transition temperature (Tg) and thermal decomposition temperature (Td) of the poly(2‐AdVE) (e.g., Mn = 22,000, Mw/Mn = 1.17) were 178 and 323 °C, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1629–1637, 2008  相似文献   

5.
Cationic polymerization of n‐butyl propenyl ether (BuPE; CH3CH CHOBu, cis/trans = 64/36) was examined with the HCl–IBVE (isobutyl vinyl ether) adduct/ZnCl2 initiating system at −15 ∼ −78 °C in nonpolar (hexane, toluene) and polar (dichloromethane) solvents, specifically focusing on the feasibility of its living polymerization. In contrast to alkyl vinyl ethers, the living nature of the growing species in the BuPE polymerization was sensitive to polymerization temperature and solvent. For example, living cationic polymerization of IBVE can be achieved even at 0 °C with HCl–IBVE/ZnCl2, whereas for BuPE whose β‐methyl group may cause steric hindrance ideal living polymerization occurred only at −78 °C. Another interesting feature of this polymerization is that the polymerization rate in hexane is as large as in dichloromethane, much larger than in toluene. A new method in determining the ratio of the living growing ends to the deactivated ones was developed with a devised monomer‐addition experiments, in which IBVE that can be polymerized in a living fashion below 0 °C was added to the almost completely polymerized solution of BuPE. The amount of the deactivated chain ends became small in hexane even at −40 °C in contrast to other solvents. Thus hexane turned out an excellent solvent for living cationic polymerization of BuPE. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 229–236, 2000  相似文献   

6.
Amphiphilic graft polymers of vinyl ethers (VEs) ( 6 ) where each branch consists of a hydrophilic polyalcohol and a hydrophobic poly(alkyl vinyl ether) segment were prepared on the basis of living cationic polymerization, and their properties and functions were compared with the corresponding amphiphilic star-shaped polymers. In toluene at ?15°C, the HI/ZnI2-initiated living block polymer 2 of an ester-containing VE (CH2? CHOCH2CH2OCOCH3) and isobutyl VE (IBVE) was terminated with the diethyl 2-(vinyloxy)ethylmalonate anion [ 3 ; ΦC(COOEt)2CH2CH2OCH ? CH2] ( 2/3 = 1/2 mole ratio) to give a macromonomer ( 4 ), H[CH2CH(OCH2CH2OCOCH3)] m-[CH2CH(OiBu)]n? C(COOEt)2CH2CH2OCH ? CH2 (m = 5, n = 15; M?n = 2600, M?w/M?n = 1.13, 1.10 vinyl groups/chain). Subsequently, 4 was homopolymerized with HI/ZnI2 in toluene at ?15°C. In 3 h, 85% of 4 was consumed and a graft polymer ( 5 ) was obtained [M?w = 15000, DPn (for 4 ) = 6]. The apparent M?w (10,900) of 5 by size-exclusion chromatography (SEC) is smaller than that by light scattering as well as that (18,300) by SEC of the corresponding linear polymer with the almost same molecular weight, indicating the formation of a multi-branched structure. Hydrolysis of the pendant esters in 5 gave the amphiphilic graft polymer 6 where each branch consists of a hydrophilic polyalcohol and a hydrophobic poly(IBVE) segment. The graft polymer 6 was found to interact specifically with small organic molecules (guests) with polar functional groups, and 6 differed in solubility and host-guest interaction from the corresponding star-shaped polymer. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
Cationic polymerization of 2,2-bis{4-[(2-vinyloxy)ethoxy]phenyl}propane [CH2CH O CH2CH2O C6H4 C(CH3)2 C6H4 OCH2CH2 O CHCH2; 2], a divinyl ether with oxyethylene units adjacent to the polymerizable vinyl ether groups and a bulky central spacer, was investigated in CH2Cl2 at 0°C with the diphenyl phosphate [(C6H5O)2P(O)OH]/zinc chloride (ZnCl2) initiating system. The polymerization proceeded quantitatively and gave soluble polymers up to 85% monomer conversion. In the same fashion as the polymerization of 1,4-bis[2-vinyloxy(ethoxy)]benzene (CH2CH O CH2CH2O C6H4 OCH2CH2 O CHCH2; 1) that we already studied, the content of the unreacted pendant vinyl ether groups of the produced soluble polymers decreased with monomer conversion, and almost all the pendant vinyl ether groups were consumed in the soluble products prior to gelation. Alternatively, endo-type double bonds were gradually formed in the polymer main chains by chain transfer reactions and other side reactions as the polymerization proceeded. The polymerization behavior of isobutyl vinyl ether (3), a monofunctional vinyl ether, under the same conditions, showed that the endo-type olefins in the polymer backbones are of no polymerization ability with the growing active species involved in the present polymerization systems. These results indicate that the intermolecular crosslinking reactions occurred primarily by the pendant vinyl ether groups, and the final stage of crosslinking process leading to gelation also may occur by the small amount of the residual pendant vinyl ether groups (supposedly less than 2%). The formation of the soluble polymers that almost lack the unreacted pendant vinyl ether groups is most likely due to the frequent occurrence of intramolecular crosslinking reactions. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1931–1941, 1999  相似文献   

8.
Palladium–catalyzed polycondensation between 2,5–diiodo–3–hexylthiophene I–Th(Hex)–I with mixtures of p–diethynylbenzene HCC—Ph—CCH and α,ω–diethynylalkane HCC(CH2)lCCH (l = 3 or 8) gives poly(aryleneethynylene) PAE–type copolymers [CC(CH2)lCC—Th(Hex)]m[CC—Ph—CC—Th(Hex)]n containing the methylene unit. The copolymers have a molecular weight (Mn) of about 1.2 × 104 as determined by GPC (polystyrene standard) and are considered to possess essentially a random sequences in view of the —CC(CH2)lCC— and —CC—Ph—CC— units as judged from their UV–visible spectra. By the incorporation of the (CH2)l unit, the λmax position of the corresponding PAE homopolymer [CC—Ph—CC—Th(Hex)]n is shifted to a shorter wavelength. However, the copolymers give rise to a photoluminescence PL peak essentially agreeing with a PL peak of the homopolymer, suggesting occurrence of energy transfer in the copolymer. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2201–2207, 1998  相似文献   

9.
Polystyrene/poly[styrene-co-(butyl methacrylate)] block copolymers with controlled molecular weights and with polydispersities generally below w/n = 1,45 and partially as low as w/n = 1,19 were synthesized by a free radical bulk copolymerization using a 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO)-capped polystyrene macroinitiator. The influence of the macroinitiator concentration on the block copolymerization was studied. The polymerization rates are independent of the macroinitiator concentration and are close to that of thermally self-initiated styrene/butyl methacrylate copolymerizations showing the important role of self-initiation for N-oxyl mediated free radical polymerizations.  相似文献   

10.
This study has shown a nearly perfect living polymerization of isobutyl vinyl ether (IBVE) to proceed not only in nonpolar media (e.g., n-hexane) but in relatively polar CH2Cl2 solvent, provided that the HI concentration is sufficiently high. The produced polymers had a nearly monodisperse molecular weight distribution (M w/M n ≤ 1.1); the number-average molecular weight (M n) increased in direct proportion to IBVE conversion and its increase continued on the addition of a fresh feed of the monomer at the end of the polymerization. The use of a more polar medium (PhNO2/CH2Cl2) or a lower HI concentration leads to chain transfer reactions, by promoting the ionic dissociation of the “nondissociated” living propagating species. The successful living polymerization by HI/I2 in CH2Cl2 indicates a very strong interaction between the iodide anion and the growing end.  相似文献   

11.
The sequential copolymerization of 1,3,6-trioxacyclooctane (TOC) and 1,3-dioxolane (DOL) (B) with various vinyl monomers (A) was investigated. Under appropriate conditions amphiphilic block copolymers of the type AB and ABA were formed. The reaction mixtures and the isolated polymers were analyzed by GPC (double detection—IR and UV at 254 nm), IR, 1H-, and 13C-NMR spectroscopy. Block copolymers with chosen molecular weights and low polydispersity could be obtained only by sequential copolymerization of p-methoxystyrene on “living” TOC. In the polymerization of DOL with α-methylstyrene and i-butyl vinyl ether (IBVE) transfer reactions take place to a larger degree.  相似文献   

12.
In the cationic polymerization of isobutyl vinyl ether (IBVE) with binary initiating systems consisting of a protonic acid as an initiator and a Lewis acid as an activator/catalyst, phosphoric acid derivatives [(RO)2POOH] coupled with SnCl4 gave highly isotactic poly(IBVE)s, whereas those with a bulky substituent (R), [C4H9CH(C2H5)CH2O]2POOH ( 7 ) and (n‐C10H21)2POOH ( 8 ), led to the highest isotacticity [meso dyad (m) = 86%]. In contrast, isospecificity was lower with IBVE–HCl and CF3COOH under the same conditions. From the effects of the polymerization temperature (−78 to 0 °C), it was concluded that the high isospecificity with 7 and 8 was due to an enthalpic factor. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1067–1074, 2001  相似文献   

13.
D -glucosamine-containing glycopolymers with well-controlled structure were synthesized by living cationic polymerization. To this end, D -glucosamine-containing vinyl ether (VE) of the type [CH2()CH(OCH2CH2OR)] was prepared, where R denotes a 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimide-β-D -glucopyranoside, i.e., the hydroxyl and amino groups in D -glucosamine residues are protected by acetyl and phthaloyl groups, respectively. It was found that (1) the efficient living cationic polymerization of VE monomer is achieved by a combination of ethylaluminum dichloride (EtAlCl2) with an adduct of trifluoroacetic acid (TFA) and isobutyl VE (IBVE) [CH3CH(OiBu)OCOCF3] (i.e., TFA/EtAlCl2 initiating system); and (2) the polymerization in toluene at the elevated temperature (0°C) is most suitable to proceed the homogeneous polymerization over the whole conversion range. The molecular weight distribution of the resulting polymers was very narrow ($ {\bar M}_w/{\bar M}_n \sim 1.1 $). Quantitative deprotection of the resulting precursor polymers was successfully achieved with hydrazine monohydrate to afford the corresponding water-soluble polymers with pendant D -glucosamine residues. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 751–757, 1997  相似文献   

14.
The living cationic polymerization of octadecyl vinyl ether (ODVE) was achieved with an 1‐(isobutoxy)ethyl acetate [CH3CH(OiBu)OCOCH3]/EtAlCl2 initiating system in hexane in the presence of an added weak Lewis base at 30 °C. In contrast to conventional polymers, poly(octadecyl vinyl ether) underwent upper‐critical‐solution‐temperature‐type phase separation in various solvents, such as hexane, toluene, CH2Cl2, and tetrahydrofuran, because of the crystallization of octadecyl chains. Amphiphilic block and random copolymers with crystallizable substituents of ODVE and 2‐methoxyethyl vinyl ether (MOVE) were synthesized via living cationic polymerization under similar conditions. Aqueous solutions of the copolymers yielded physical gels upon cooling because of strong interactions between ODVE units, regardless of the copolymer structure. The product gels, however, exhibited different viscoelastic properties: A 20 wt % solution of a block copolymer (400/20 MOVE/ODVE) became a soft physical gel that behaved like a typical gel, whereas the corresponding random copolymer gave a transparent but stiff gel with a certain relaxation time. Differential scanning calorimetry analysis confirmed that the crystalline–amorphous transition of the octadecyl chains was a key step for inducing such physical gelation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1155–1165, 2005  相似文献   

15.
Peroxidized polypropylene has been used as a heterofunctional initiator for a two-step emulsion polymerization of a vinyl monomer (M1) and vinyl chloride with the production of vinyl chloride block copolymers. Styrene, methyl-, and n-butyl methacrylate and methyl-, ethyl-, n-butyl-, and 2-ethyl-hexyl acrylate have been used as M1 and polymerized at 30–40°C. In the second step vinyl chloride was polymerized at 50°C. The range of chemical composition of the block copolymers depends on the rate of the first-step polymerization of M1 and the duration of the second step; e.g., with 2-ethyl-hexyl acrylate block copolymers could be obtained with a vinyl chloride content of 25–90%. The block copolymers have been submitted to precipitation fractionation and GPC analysis. Noteworthy is the absence of any significant amount of homopolymers, as well as poly(M1)n as PVC. The absence of homo-PVC was interpreted by an intra- and intermolecular tertiary hydrogen atom transfer from polypropylene residue to growing PVC sequences. The presence of saturated end groups on the PVC chains is responsible for the improved thermal stability of these block polymers, as well as their low rate of dehydrochlorination (180°C). Molecular aggregation in solution has been shown by molecular weight determination in benzene and tetrahydrofuran.  相似文献   

16.
Abstract

Both AB and BA block copolymers of α-methylstyrene (αMeSt) and 2-chloroethyl vinyl ether (CEVE) were synthesized by the sequential living cationic polymerization initiated with the HCl-CEVE adduct (1a)/SnBr4 system in CH2Cl2 at -78°C. αMeSt-CEVE (AB) block copolymers with narrow molecular weight distributions ([Mbar]w/[Mbar]n ~ 1.15) were obtained when αMeSt was polymerized first, followed by addition of CEVE to the resulting αMeSt living polymer solution. The reverse order of monomer addition, from CEVE to αMeSt, also led to a BA-type block copolymer. In the polymerization of a mixture of the two monomers, almost random copolymers were obtained. Living polymerizations of αMeSt were also induced with functional initiating systems, HCl-functionalized vinyl ether adducts (1b-1d)/SnBr4, to give end-function-alized poly(αMeSt)s with a methacrylate, an acetate, or a phthalimide terminal.  相似文献   

17.
We first achieved the living cationic polymerization of azide‐containing monomer, 2‐azidoethyl vinyl ether (AzVE), with SnCl4 as a catalyst (activator) in conjunction with the HCl adduct of a vinyl ether [H‐CH2CH(OR)‐Cl; R ? CH2CH2Cl, CH2CH(CH3)2]. Despite the potentially poisoning azide group, the produced polymers possessed controlled molecular weights and fairly narrow distributions (Mw/Mn ~ 1.2) and gave block polymers with 2‐chloroethyl vinyl ether. The pendent azide groups are easily converted into various functional groups via mild and selective reactions, such as the Staudinger reduction and copper‐catalyzed azide‐alkyne 1,3‐cycloaddition (CuAAC; a “click” reaction). These reactions led to quantitative pendent functionalization into primary amine (? NH2), hydroxy (? OH), and carboxyl (? COOH) groups, at room temperature and without any acidic or basic treatment. Thus, poly(AzVE) is a versatile precursor for a wide variety of functional vinyl ether polymers with well‐defined structures and molecular weights. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1449–1455, 2010  相似文献   

18.
A series of cyclopentadiene (CPD)‐based polymers and copolymers were synthesized by a controlled cationic polymerization of CPD. End‐functionalized poly(CPD) was synthesized with the HCl adducts [initiator = CH3CH(OCH2CH2X)Cl; X = Cl ( 2a ), acetate ( 2b ), or methacrylate] of vinyl ethers carrying pendant functional substituents X in conjunction with SnCl4 (Lewis acid as a catalyst) and n‐Bu4NCl (as an additive) in dichloromethane at −78 °C. The system led to the controlled cationic polymerizations of CPD to give controlled α‐end‐functionalized poly(CPD)s with almost quantitative attachment of the functional groups (Fn ∼ 1). With the 2a or 2b /SnCl4/n‐Bu4NCl initiating systems, diblock copolymers of 2‐chloroethyl vinyl ether (CEVE) and 2‐acetoxyethyl vinyl ether with CPD were also synthesized by the sequential polymerization of CPD and these vinyl ethers. An ABA‐type triblock copolymer of CPD (A) and CEVE (B) was also prepared with a bifunctional initiator. The copolymerization of CPD and CEVE with 2a /SnCl4/n‐Bu4NCl afforded random copolymers with controlled molecular weights and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight = 1.3–1.4). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 398–407, 2001  相似文献   

19.
Star‐shaped polymers of isobutyl vinyl ether (IBVE) with many arms (“crew cut” type) have been synthesized by living cationic polymerization using the HCl‐IBVE adduct/ZnCl2 initiating system. A short living polymer (DPn ⪇ 30) of IBVE is allowed to react with a large amount of divinyl ether ([divinyl ether]0/[P*] = 10–15) to give soluble star polymers whose number of arms ranged from 40 to 120. The diameter of such “crew cut” star polymers reached ca. 20 nm.  相似文献   

20.
The cationic polymerization of cis- and trans-ethyl propenyl ethers (EPE, CH3? CH?CH? O? C2H5), initiated by a mixture of hydrogen iodide and iodine (HI/I2 initiator) at ?40°C in nonpolar media (toluene and n-hexane), led to living polymers of controlled molecular weights and a narrow molecular weight distribution (MWD) (M?w/M?n = 1.2–1.3). The geometrical isomerism of the monomer did not affect the living character of the polymerization. 13C NMR stereochemical analysis of the polymers showed that the living propagating end is sterically less crowded than nonliving counterparts generated by conventional Lewis acids (e.g., BF3OEt2). New block copolymers between EPE (cis or trans) and isobutyl vinyl ether were also prepared by sequential living polymerization of the two monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号