首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The crystal structure of 1,4-benzenedithiol (BDT) was determined by the Rietveld method based on the calculation of the atomic coordinates of the BDT molecule using the Molecular Mechanics Program (MMP2). The refined crystal structure of BDT was monoclinic P21/c with dimensions, a = 7.795, b = 7.290, c = 5.955 Å, β = 92.16°, z = 2. The R factor of the refined structure was 0.038. Using above results, the mechanism of solid-state addition polymerization of BDT to 1,4-diethynylbenzene (DEB) was studied. Sublimed BDT piles up onto glass plate substrate and forms the layer structure along with the a axis. An inclination angle of the piled BDT column was 60° toward the substrate surface. DEB crystal structure was also monoclinic P21/c with a = 4.007, b = 6.018; c = 15.340 Å, β = 91.42°, z = 2. Sublimation of equimolar mixture of BDT and DEB gave a crystal having 1 : 1 composition, in which DEB column is situated between the columns of BDT. Relative arrangement of both monomers was suitable for the addition of  SH and  CCH groups, since the distance between the two groups is 3.3 Å by CERIUS II calculation. Therefore, the addition polymerization of BDT to DEB easily proceeded by UV irradiation and the resulting polymer had a highly layer structure along with the a axis of BDT crystal. Tentatively estimated crystal structure of polymer obtained is monoclinic with a = 7.73, b = 7.30, c = 5.95 Å, β = 92.16°. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1621–1625, 1997  相似文献   

2.
A novel addition polymerization of 1,4-benzenediselenol (BDSe) to 1,4-diethynylbenzene (DEB) was carried out by UV-irradiation in toluene at 60°C under nitrogen atmosphere. The polymerization proceeded at such a fast rate as to give 60–70% yield for 6 min. A paleyellowish polymer (M?n = 20000–30000) precipitated with the progress of the polymerization. In the presence of BPO, the polymerization also proceeded rapidly to give the polymer (M?n = 18000) in 50% yield for 4 min. The polymer was insoluble in conventional organic solvents. In the IR spectrum of the polymer, the characteristic absorption bands of cis- and trans-vinylene groups appeared at 1340 and 940 cm?1, respectively. The microstructures of polymers were evaluated as the cis content was 90% and the trans one was 10%, based on the model adducts of benzeneselenol and ethynylbenzene. The cis ← trans isomerization occurred with UV-irradiation: the cis vinylene group of the polymer decreased from 90 to 40% for 18 h. The electrical conductivity of the polymer was in the order of 10?13 S/cm without dopant, but increased up to 10?5 S/cm on I2 doping. DSC and TG thermograms of the polymer indicated its decomposition point as 465°C under nitrogen atmosphere.  相似文献   

3.
Summary: An advanced isoconversional method has been applied to determine the effective activation energies (E) for the glass transition in polystyrene (PS), poly(ethylene terephthalate) (PET), and boron oxide (B2O3). The values of E decrease from 280 to 120 kJ · mol−1 in PS, from 1 270 to 550 kJ mol−1 in PET, and from 290 to 200 kJ mol−1 in B2O3. It is suggested that a significant variation in E should be observed for the fragile glasses that typically include polymers.

Variation in the effective activation energy of PS, PET, and B2O3 with temperature.  相似文献   


4.
The formation of carbonaceous clusters in ion‐irradiated polymer films was investigated extensively. Information about these clusters may be obtained with ultraviolet–visible (UV–vis) spectroscopy. The optical band gap (Eg), calculated from the absorption edge of the UV spectra of these polymers, can be correlated to the number of carbon atoms (N) in a cluster with the modified Tauc equation. The structure of the cluster is also related to Eg; for example, a six‐membered‐benzene‐ring‐type structure has an Eg of ≈5.3 eV, whereas a buckminsterfullerene‐type structure has an Eg of ≈4.9 eV. These clusters are responsible for the electrical conductivity in these films. In this work, polycarbonate films (20 μm thick) were irradiated with 45‐MeV Li ions at fluences of 1 × 1012 to 1 × 1013 cm−2 and were characterized with UV–vis spectroscopy and impedance measurements. The Eg values, calculated from the absorption edge in the 280–315‐nm region with the Tauc relation, varied from 4.39 to 4.35 eV for the pristine and various irradiated samples, respectively. The cluster size showed a range of 60–62 carbon atoms per cluster. The sheet conductivity (σdc) and loss (tan δ) values of 10−16 Ω−1cm−1 and 10−3 for the pristine sample changed to 10−15 Ω−1cm−1 and 10−2, respectively, for the irradiated samples. This increase in the values of σdc and tan δ may be correlated to the increase in the size of the carbonaceous clusters. This study provides insight into the mechanism of electrical conductivity in irradiated polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1589–1594, 2000  相似文献   

5.
In the title compound, C8H12N+·C2H4O5P, the anions are linked by two O—H⋯O hydrogen bonds [H⋯O both 1.75 Å, O⋯O = 2.5781 (15) and 2.5834 (15) Å, and O—H⋯O = 169 and 176°] into sheets built from alternating (8) and (32) rings. Each cation is linked to an anion sheet by three N—H⋯O hydrogen bonds [H⋯O = 1.88–2.04 Å, N⋯O = 2.7603 (16)–2.9334 (17) Å and N—H⋯O = 162–166°], such that all the cations pendent from one face of the sheet are of the R configuration, while all those pendent from the opposite face are of the S configuration.  相似文献   

6.
A polyaddition of phenylphosphine (PH) to 1,4-divinylbenzene (DVB) or 1,4-diisopropenylbenzene (DIPB) was carried out by radical initiations or UV irradiation at 60–80°C in toluene under a nitrogen atmosphere. The soluble polymer with higher molecular weight () was obtained in a high yield with AIBN initiator for 95 h in the presence of 5% excess of PH to DVB (monomer feed ratio [DVB]0/[PH]0 = 1/1.05). On the other hand, a polyaddition of PH to DIPB proceeded much slower than the case of DVB, but the high polymer was obtained in a high yield by choosing polyaddition conditions such as polyaddition temperature and initiator concentration. From 1H-NMR, IR analyses, and phosphorus content of the polymers, it was characterized that both polymers have the alternating structure consisting of PH and DVB or DIPB units in 1 : 1 ratio. The glass transition and decomposition temperatures of both polymers under a nitrogen atmosphere were almost similar: 15–30°C and 380–385°C, respectively; but, the polymers were oxidized by heating under an atmosphere of air. The polymers had a self-extinguishing property and the polymer blend of the flammable polymers such as polystyrene and polyethylene with the phosphorus-containing polymers exhibited an excellent flame resistance. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
A novel addition polymerization of 1,4-benzenediselenol (BDSe) to 1,4-divinylbenzene (DVB) was carried out with various azo radical initiators [dimethyl 2,2′-azobisisobutyrate (DAIB), 1,1′-azobis(1-acetoxy-1-phenylethane) (AAPE), and AIBN] in toluene at 65 and 75°C under a nitrogen atmosphere. The polymerization proceded without an induction period, and pale-yellowish powder polymers were obtained in 89% yields for 75 h (DAIB), 89% yields for 24 h (AAPE), and 60% yields for 8 h (AIBN). The molecular weight (Mw) of the insoluble polymers in toluene was about 4000 (IBN) to 14,000 (DAIB or AAPE) by GPC. The polymer had an alternating structure of BDSe to DVB units by 1H-NMR, IR analyses, and selenium contents, but the polymer contained the diselenide linkage by Raman spectroscopy. By AIBN initiator, the yield of the polymers did not increase over 60% and higher molecular weight polymer was hardly obtained. According to the model addition reaction of benzeneselenol to styrene by AIBN, it was found that AIBN was consumed by the side reaction between dimethyl-N-(2-cyano-2-propyl)ketenimine derivedAppl 11 from AIBN and benzeneselenol to give the adduct C, MH+ 295 by DCI MS. On the other hand, DAIB and AAPE initiators, which do not form a ketenimine intermediate, gave the polymers of higher molecular weight in a higher yield. The polymer film exhibited high refractive index (n25D = 1.81) and a reversible phase transition between a transparency and an opaque by thermal mode. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
A novel addition polymerization of 2-cyano-1,4-benzenedithiol to 1,4-diethynylbenzene was carried out by UV irradiation in toluene at 50°C under nitrogen atmosphere. The polymerization proceeded readily, and a pale-yellowish conjugated polymer contain-ing sulfur atoms and cyano groups (M?n = 20,400–80,800) was obtained in a 60–80% yield for 120–250 min. The polymer was found to be 1 : 1 alternating structure of anti-Markownikoff's type and was insolu-ble in conventional organic solvents. Since the polymer having molecular weight of the order of 104 had a softening point at 115°C, a thin polymer film was obtained by heat press. TG analysis of the polymer indicated its decomposition point at about 620°C under argon atmosphere. The electrical conductivity of the polymer pellet was 10?10 S/cm at 300 K without doping and on the order of 10?5 S/cm on I2 doping. Fur-thermore, the electrical conductivity of the undoped polymer pellet reversibly changed from the order of 10?10 S/cm at 300 K to 10?7 S/cm at 435 K with temperature variation, accompanying with increasing carrier density and mobility. The polymer pellet (M?n = 80,800) aged at 250°C for 5 min under nitrogen atmosphere exhibited the order of 10?7 S/cm at 300 K. Thermal treatment of the polymers was thought to cause spreading of conjugated system through molecular rearrangement supported by x-ray diagrams. An absorption edge of diffuse reflectance spectra of the polymer (M?n = 80,800) was 635 nm and shifted to 880 nm by heat treatment of the polymer. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
In the title compound, [Na4(C8H16BO4)4(C4H10O2)]n, there are two coordination types for the four independent Na+ cations: two Na+ cations bond to six diolate O atoms [Na—O = 2.305 (2)–2.609 (2) Å], while the other two are five‐coordinate via one 1,4‐butane­diol [2.289 (2) and 2.349 (3) Å] and four diolate O atoms [2.295 (2)–2.408 (2) Å]. Corresponding to this, there are three‐ and four‐coordinate diolate O atoms, the latter bridging Na atoms. The 1,4‐butane­diol mol­ecules lie on inversion centres. The boron stereochemistry shows minor local perturbations from its usual tetrahedral state [B—O = 1.457 (4)–1.503 (4) Å]. The resulting polymer packs as sheets parallel to the (10) plane crosslinked by the butane­diol mol­ecules. The structure was solved using data from a multiple crystal.  相似文献   

10.
The diamine 1,4-bis(4-aminophenoxy)-2,5-di-tert-butylbenzene, containing symmetric, bulky di-tert-butyl substituents and a flexible ether unit, was synthesized and used to prepare a series of polyamides by the direct polycondensation with various aromatic dicarboxylic acids in N-methyl-2-pyrrolidinone (NMP) using triphenyl phosphite and pyridine as condensing agents. All the polymers were obtained in quantitative yields with inherent viscosities of 0.32–1.27 dL g−1. Most of these polyamides, except II a , II d , and II e , showed an amorphous nature and dissolved in polar solvents and less polar solvents. Polyamides derived from 4,4′-sulfonyldibenzoic acid, 4,4′-(hexafluoro-isopropylidene)dibenzoic acid, and 5-nitroisophthalic acid were even soluble in a common organic solvent such as THF. Most polyamide films could be obtained by casting from their N,N-dimethylacetamide (DMAc) solutions. The polyamide films had a tensile strength range of 49–78 MPa, an elongation range at break of 3–5%, and a tensile modulus range of 1.57–2.01 GPa. These polyamides had glass transition temperatures ranging between 253 and 276°C, and 10% mass loss temperatures were recorded in the range 402–466°C in nitrogen atmosphere. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1069–1074, 1998  相似文献   

11.
The synthesis, characterization, thermal, and dielectric properties of three different zwitterionic methacrylates of the sulfobetaine type are presented. Diethylamine-ethyl-, 2-(diethylaminoethoxy)-ethyl-, and 2-(2-diethylaminoethoxy) ethoxy-ethyl-methacrylates were made to react with butanosultone to prepare monomers with variable flexibility. The flexibility of the lateral chain of the polymethacrylates decreased the glass transition temperature (Tg down to 300 K) of the polymers. A linear relationship between Tg and the number of carbon atoms was shown for these materials. X-ray diffraction and DSC experiments showed the formation of new ordered phases in these polymers, which inhibited their dipole conductivity. On heating, these phases were destroyed and values of conductivity of 10−7–10−3 S cm−1 were obtained in the studied range of temperature. Variation of conductivity with temperature was established according to the Arrhenius equation. Dielectric properties exhibited a small deviation of the Debye type behavior, and β parameters of the Cole–Cole equations were calculated for the synthesized polymers. © 1997 John Wiley & Sons, Inc.  相似文献   

12.
A poly(acrylamide) was synthesized from N α -Boc-N ? -acrolyl-l-lysylglycine methyl ester via radical polymerization. This polymer typically had Mn ~ 100,000 g/mol, Mw ~ 300,000 g/mol, and a Tg of 93°C. Removal of Boc with TFA and cyclization with DABCO? in DMSO at 65°C afforded a soluble piperazinedione-containing polymer that had a Tg of 157°C and thermal stability up to 300°C. These results demonstrate a viable and efficient synthetic route to piperazinedione-containing polyacrylamides of high molecular weight. Related polymers that incorporate substituted indane moieties could be useful high Tg materials for fabrication of LC and NLO devices.  相似文献   

13.
A thermally stable carbocationic covalent organic network (CON), named RIO-70 was prepared from pararosaniline hydrochloride, an inexpensive dye, and triformylphloroglucinol in solvothermal conditions. This nanoporous organic material has shown a specific surface area of 990 m2 g−1 and pore size of 10.3 Å. The material has CO2 uptake of 2.14 mmol g−1 (0.5 bar), 2.7 mmol g−1 (1 bar), and 6.8 mmol g−1 (20 bar), the latter corresponding to 3 CO2 molecules adsorbed per pore per sheet. It is shown to be a semiconductor, with electrical conductivity (σ) of 3.17×10−7 S cm−1, which increases to 5.26×10−4 S cm−1 upon exposure to I2 vapor. DFT calculations using periodic conditions support the findings.  相似文献   

14.
New poly(amide–imide)s were prepared from a diimide–dicarboxylic acid, 1,4-bis(4-trimellitimidophenoxy)-2-tert-butylbenzene ( BTTB ), with various diamines by the direct polycondensation in N-methyl-2-pyrrolidinone (NMP) using triphenyl phosphite and pyridine as condensing agents. The new diimide–dicarboxylic acid BTTB containing an ether linkage and tert-butyl substituent was synthesized by the condensation reaction of 1,4-bis(4-aminophenoxy)-2-tert-butylbenzene with trimellitic anhydride. All the polymers were obtained in quantitative yields with inherent viscosities of 0.62–1.06 dL g−1. The polymers were amorphous, and most of them were readily soluble in aprotic polar solvents such as NMP, N,N-dimethylacetamide (DMAc), and N,N-dimethylformamide (DMF), as well as in less polar solvents such as dimethyl sulfoxide (DMSO), m-cresol, pyridine, and γ-butyrolactone, and also even in tetrahydrofuran. The glass transition temperatures of the polymers were determined by DSC method, and they were in the range of 238–279°C. These polymers were stable up to 408–449°C in air and 451–483°C in nitrogen and lose 10% weight in the range of 479–525°C in air and 480–528°C in nitrogen atmosphere. The polymer films had a tensile strength range of 71–115 MPa, an elongation at break range of 4–14%, and a tensile modulus range of 2.3–3.1 GPa. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2301–2307, 1998  相似文献   

15.
A new type of single-ion conductor with fixed cation was synthesized by spontaneous anionic polymerization of 4-vinylpyridine in the presence of short polyethylene oxide ( PEO ) chains as alkylating agents. These comblike polymers have low Tgs and are amorphous with the shorter PEO s. Their conductivities are unaffected by the nature of the anion ( Br , ClO 4, and tosylate) and are controlled by the free volume and the mobility of the pendant cation. By comparison of the results at constant free volume, it is shown that the charge density decreases with the increasing length of pendant PEO demonstrating that PEO acts only as a plasticizing agent. Best conductivity results (σ = 10−5 S cm−1 at 60°C) are obtained with PEO side chains of molecular weight 350. With this sample, the conductivity in the presence of various amounts of added salt (LiTFSI) was studied. A best value of 10−4 S cm−1 at 60°C is obtained with a molar ratio EO/Li of 10. It is shown that, over the range of examined concentrations (0.2–1.3 mol Li kg−1), the reduced conductivity σr/c increases linearly with increasing salt concentration showing that the ion mobility increases continuously. Such behavior is quite unusual since in this concentration range a maximum is generally observed with PEO systems. To interpret this result and by analogy with the behavior of this type of polymer in solution, it is proposed that the conformation of these polymers in the solid state is segregated with the P4VP skeleton more or less confined inside the dense coils surrounded by the PEO side chains. Under the influence of the increasing salt concentration, this microphase separation vanishes progressively: The LiTFSI salt exchanges with the tosylate anions and acts as a miscibility improver agent. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2719–2728, 1997  相似文献   

16.
Two Cd(II) coordination polymers have been synthesized with derivatives of pyrazine-1,4-dioxide and thiocyanate anion as bridging ligands and structurally determined by X-ray crystallography. Complex 1, [Cd(μ1,3-SCN?)21,6-L1)] n (L1?=?2,5-dimethylpyrazine-1,4-dioxide), belongs to the triclinic, space group P 1 with a?=?5.7627(18)?Å, b?=?7.182(2)?Å, c?=?7.509(2)?Å, α?=?74.042(3)°, β?=?84.766(4)°, γ?=?88.162(4)°; complex 2, [Cd21,3-SCN?)44-L2)] n (L2?=?2,3,5,6-tetramethylpyrazine-1,4-dioxide), crystallizes in a monoclinic system with space group C2/m with a?=?10.194(4)?Å, b?=?13.491(6)?Å, c?=?8.140(3)?Å, β?=?120.372(4)°. Complex 1 shows a two-dimensional sheet structure, and in a direction the Cd(II) ions were coordinated by μ1,3-SCN? forming the one-dimensional chain and the L1 bridging ligand made the chains connect in the c direction leading to formation of a two-dimensional sheet on the ac plane. For 2 the one-dimensional chains in the a axis were constructed by coordination of μ1,3-SCN? bridging ligands with the Cd(II) ions, and in b and c directions the chains were joined by L2 bridging ligands leading to a three-dimensional structure. In 2 L2 displays a μ4-bridging coordination mode. Both complexes exhibit strong fluorescence emission.  相似文献   

17.
Poly(dicyanoacetylene) (PDCA) has been synthesized and characterized. The pristine polymer has EPR g-value, linewidth, unpaired spin concentration, spin—spin relaxation time (T2), and room temperature dc conductivity (σRT) very similar to those of pristine cis-polyacetylene (PA), but shorter spin—lattice relaxation time (T1). Saturation doping with iodine has little effect on most EPR characteristics of the polymer except for a slight increase in T1. The doped PDCA has σRT value of only 5 X 10-9 (Ω cm)-1, indicating either low carrier concentration and/or carrier mobility. Partial cyclization of the nitrile groups by heating at 400°C of PDCA produces l-PDCA with significant increases in unpaired spin concentration and σRT but marginal effects on other properties. Saturation doping of l-PDCA with iodine increases σRT to 7 × 10-3 (Ω cm)-1 without appreciable changes in EPR characteristics. The dopants in both polymers can be removed by evacuation indicating only weak charge transfer interactions. The possible stereoelectronic contribution toward the property differences between the PDCA polymers and PA are discussed.  相似文献   

18.
The double salt 1 consisting of the hydrochloride of 6-amino-2,4-trans-hexadienoic acid and cadmium chloride in a 2:1 stoichiometry polymerizes in the crystalline state if exposed to UV or γ irradiation. A stereoregular polymeric ampholyte is formed in an extended chain macroconformation, embedded in an inorganic matrix. The crystal structure of the polymerized crystals and the solution properties of the polymer are reported. Polymerized crystals are triclinic, space group P1 , a = 7.2144 Å, b = 7.2447 Å, c = 18.5936 Å, α = 104.49°, β = 96.631°, γ = 95.706°, Z = 2. The structure consists of 2-dimensional layers of polymer and inorganic CdCl6 octahedra alternatively stacked in the third dimension. The cadmium ions can be separated from the polymer by a precipitation as insoluble CdS. After separation from the inorganic material the polymer is soluble in strong acids and bases and insoluble in neutral water. From viscosity measurements of alkaline solutions of the polymer, an average molar mass of 4 × 104 g/mol can be deduced. The polymer selectively adsorbs divalent transition metal ions if suspended in an aqueous solution of transition metal salts. The structure of the resulting polymer–metal complexes is discussed.  相似文献   

19.
In the title compound, C13H16N22+·2C2H4O5P, the cation lies across a twofold rotation axis in space group Fdd2. The anions are linked into molecular ladders by two O—H⃛O hydrogen bonds [H⃛O = 1.73 and 1.77 Å, O⃛O = 2.538 (2) and 2.598 (3) Å, and O—H⃛O = 160 and 170°], these ladders are linked into sheets by a single type of N—H⃛O hydrogen bond [H⃛O = 1.75 Å, N⃛O = 2.624 (3) Å and N—H⃛O = 171°] and the sheets are linked into a three‐dimensional framework by a single type of C—H⃛O hydrogen bond [H⃛O = 2.48 Å, C⃛O = 3.419 (4) Å and C—H⃛O = 167°].  相似文献   

20.
A new energetic material, 4,5‐diacetoxyl‐2‐(dinitromethylene)‐imidazolidine (DADNI), was synthesized by the reaction of 4,5‐dihydroxyl‐2‐(dinitromethylene)‐imidazolidine (DDNI) and acetic anhydride, and characterized by single crystal X‐ray diffraction. Crystal data for DADNI are monoclinic, space group C2/c, a=15.9167(3) Å, b=8.6816(4) Å, c=8.5209(3) Å, β=103.294(9)°, V=1145.9(3) Å3, Z=4, µ=0.150 mm−1, F(000)=600, Dc=1.682 g·cm−3, R1=0.0565 and wR2=0.1649. Thermal decomposition behavior of DADNI was studied and an intensely exothermic process was observed. The kinetic equation of the decomposition reaction is: dα/dT=(1016.64/β)×4α3/4exp(−1.582×105/RT). The critical temperature of thermal explosion is 163.76°C. The specific heat capacity of DADNI was studied with micro‐DSC method and theoretical calculation method. The molar heat capacity is 343.30 J·mol−1·K−1 at 298.15 K. The adiabatic time‐to‐explosion of DADNI was calculated to be 87.7 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号