首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction between dimethyldivinylsilane and 3,6-diazaoctane in the presence of 3-lithio-3,6-diazaoctane yields a new telechelic oligomer, poly(silamine), which consists of alternating 3,3-dimethyl-3-silapentane and N,N′-diethylethylenediamine units in the main chain. Poly(silamine) shows unique phase transition properties in response to the degree of protonation of amino groups in the polymer. Poly(silamine) also shows a strong interaction with several anions. Due to the interaction between poly(silamine) and anions along with the protonation of amino groups in the poly(silamine), the rubber elasticity of poly(silamine) is drastically changed. A discrete volume change can be observed when the environmental pH of the poly(silamine) gels is varied. This can be explained not only by a change in ionic osmotic pressure but also by a change in the rubber elasticity of the networks in the gel.  相似文献   

2.
The objective of this study was to synthesize rubbery polymers with a high H2S/CH4 selectivity for possible use as membrane materials for the separation of H2S from ‘low-quality’ natural gas. Two poly(ether urethanes), designated hereafter PU1 and PU3, and two poly(ether urethane ureas), designated PU2 and PU4, were synthesized and cast in the form of ‘dense’ (homogeneous) membranes. PU1 and PU2 contained poly(propylene oxide) whereas PU3 and PU4 contained poly(ethylene oxide) as the polyether component. The permeability of these membranes to two ternary mixtures of CH4, CO2, and H2S was measured at 35°C, and for a PU4 membrane also at 20°C, in the pressure range from 4 to 13.6 atm (4.05–13.78×105 Pa). PU4 is a very promising membrane material for H2S separation from mixtures with CH4 and CO2, having a H2S/CH4 selectivity greater than 100 at 20°C as well as a very high permeability to H2S. Permeability measurements were also made with commercial PEBAXTM membranes for comparison. The possibility of upgrading low-quality natural gas to US pipeline specifications for H2S and CO2 by means of membrane processes utilizing both highly H2S-selective and CO2-selective polymer membranes is discussed.  相似文献   

3.
Several types of poly(silamine)s were prepared and their structure-characteristics relationships were investigated. When a phenyl ring in the organosilyl unit and/or a cyclic structure in the amino unit was introduced, the glass transition temperatures were increased significantly in order to increase film formability. From the thermogravimetric analysis of the poly(silamine)s, it was found that the thermal decomposition of poly(silamine)s starts at ca. 380–400°C. On electron-beam irradiation of the poly(silamine) films, degradation of the polymer took place. On the basis of these results, poly(silamine)s can be one of the candidates for new positive-type polymeric resists.  相似文献   

4.
Measurements of the complex shear compliance have been made from 0.1 to 7 cycles/sec. and from ?5° to 45°C. on several samples of natural rubber cross-linked by dicumyl peroxide in the presence of a diluent oil (volume fraction of rubber, v2, = 0.63 and 0.76) which was subsequently extracted. The properties of the extracted vulcanizates were compared with those having the oil still present and with those of conventional undiluted vulcanizates. Measurements of the diffusion coefficient of radioactively tagged n-hexadecane in trace amounts through the polymer structure were also made both before and after extraction of the oil. The diffusion coefficient was higher in the presence of the oil by an amount consistent with the Fujita theory for concentration dependence of diffusion rate based on free volume considerations. The low-frequency mechanical losses (reduced to 25°C. by the method of reduced variables), as measured by the loss tangent, were shifted to higher frequencies by the presence of oil to a much larger degree than would be expected from the difference in local mobility gauged by the diffusion coefficient. The equilibrium modulus, derived by extrapolation to zero frequency, was diminished by the presence of oil to a greater extent than the factor of v2? expected from the simple theory of rubberlike elasticity. The low-frequency losses in the extracted vulcanizates were smaller than those in conventional vulcanizates with comparable degrees of cross-linking; the differences are attributed to differences in network topology.  相似文献   

5.
Polydimethylsiloxane (PDMS) is the most commonly used membrane material for the separation of condensable vapors from lighter gases. In this study, a composite PDMS membrane was prepared and its gas permeation properties were investigated at various upstream pressures. A microporous cellulose acetate (CA) support was initially prepared and characterized. Then, PDMS solution, containing crosslinker and catalyst, was cast over the support. Sorption and permeation of C3H8, CO2, CH4, and H2 in the prepared composite membrane were measured. Using sorption and permeation data of gases, diffusion coefficients were calculated based on solution‐diffusion mechanism. Similar to other rubbery membranes, the prepared PDMS membrane advantageously exhibited less resistance to permeation of heavier gases, such as C3H8, compared to the lighter ones, such as CO2, CH4, and H2. This result was attributed to the very high solubility of larger gas molecules in the hydrocarbon‐based PDMS membrane in spite of their lower diffusion coefficients relative to smaller molecules. Increasing feed pressure increased permeability, solubility, and diffusion coefficients of the heavier gases while decreased those of the lighter ones. At constant temperature (25°C), empirical linear relations were proposed for permeability, solubility, and diffusion coefficients as a function of transmembrane pressure. C3H8/gas solubility, diffusivity, and overall selectivities were found to increase with increasing feed pressure. Ideal selectivity values of 9, 30, and 82 for C3H8 over CO2, CH4, and H2, respectively, at an upstream pressure of 8 atm, confirmed the outstanding separation performance of the prepared membrane. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Various amounts of diethylene glycol bis[4‐(4′‐ethoxybenzoyloxy)benzoate] (DEBEB) were added into a poly(cis‐butadiene) (PB) membrane to improve its gas permeation ability. This type of rubber/liquid crystal (LC) composite membranes showed two obvious characteristics that are different from the gas permeation behavior reported in previous literature: (1) The permeabilities to O2, N2, and CO2 were enhanced at room temperature, for example, the permeabilities for the PB/DEBEB (90/10) membrane were higher above six times than those of PB membrane under the same conditions. It is suggested that the interface microvoids probably existed on pontes between polar crystal domains and nonpolar PB matrix. (2) All relationships between the permeability coefficient (P) and temperature (T) were characterized by N‐shape, that is, there were the peaks and valleys on the PT curves. Furthermore, morphology studies demonstrated that when DEBEB content in the membranes was above 10 wt %, it was spherically dispersed and embedded in the PB matrix in a crystal domain state. Gas permeation characteristics of the composite membranes were appropriately interpreted as together influence results of DEBEB phase transition behavior and the membrane morphology. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1833–1840, 2000  相似文献   

7.
The morphological structure and mechanical properties of the star‐shaped solution‐polymerized styrene‐butadiene rubber (SSBR) and organically modified nanosilica powder/star‐shaped SSBR co‐coagulated rubber (N‐SSBR) both filled with silica/carbon black (CB) were studied. The results showed that, compared with SSBR, silica powder could be mixed into N‐SSBR much more rapidly, and N‐SSBR/SiO2 nanocomposite had better filler‐dispersion and processability. N‐SSBR/SiO2/CB vulcanizates displayed higher glass‐transition temperature and lower peak value of internal friction loss than SSBR/SiO2/CB vulcanizates. In the N‐SSBR/SiO2/CB vulcanizates, filler was dispersed in nano‐scale resulting in good mechanical properties. Composites filled with silica/CB doped filler exhibited more excellent mechanical properties than those filled with a single filler because of the better filler‐dispersion and stronger interfacial interaction with macromolecular chains. N‐SSBR/SiO2/CB vulcanizates exhibited preferable performance in abrasion resistance and higher bound rubber content as the blending ratio of silica to CB was 20:30. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
The theory of Part I is applied to the diffusion of several aromatic diffusants in two “smooth chained” polymers: poly(ethylene terephthalate) (PET) and natural rubber. Modifications of the theory necessary to accommodate vinyl polymers are discussed and applied to benzene in PMA and PEA. In all cases the theory agrees satisfactorily with the experimental D(0,T) and D(c,T)/D(0,T) data, and the values of the disposable rg and Δ parameters are of the expected order. The limiting Arrhenius behavior of benzene in natural rubber appears to be correctly predicted. The cell model is definitely more appropriate than the free volume model for the calculation of enfolding chain effects in highly crystalline PET. For the three amorphous polymers the two models give comparable results, the cell model being somewhat superior for natural rubber and PMA.  相似文献   

9.
A significant reduction in the gas permeability of the poly(1-trimethylsilyl-1-propyne) (PMSP) membrane was investigated in terms of the membrane thickness and the storage environment. The effects of physical aging were observed with thinner membranes and under vacuum conditions compared with storage in air. The decrease in the permeability coefficient was dependent on the decrease in the hole saturation constant of Langmuir adsorption (C'H), which is related to the volume of the microvoids. Physical aging in the PMSP membrane affected not only the glassy domain but also the rubbery one. To stabilize the permeability of the PMSP membrane, a poly(1-trimethylsilyl-1-propyne-co-1-phenyl-1-propyne) [poly(TMSP-co-PP)] membrane was prepared. Poly(TMSP-co-PP) has the same unit of poly(1-phenyl-1-propyne), which membrane has stable permeability. The poly(TMSP-co-PP) with less than 20 mol % PP content was estimated to be a random copolymer based on theoretical gas permeation analysis. In the poly(TMSP-co-PP) membrane, the relation between the PP content and C'H was similar to the relation between the PP content and the gas permeability. The stability of the permeability was dependent on the PP content. The poly(TMSP-co-PP) membrane containing 10 mol % PP had both high permeability and good stability under some of the aging conditions performed in this work. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
Phenylacetylene (PA) derivatives having two polar groups (ester, 2a – d ; amide, 4) or one cyclic polar group (imide, 5a – c ) were polymerized using (nbd)Rh+[(η6‐C6H5)B?(C6H5)3] catalyst to afford high molecular weight polymers (~1 × 106 – 4 × 106). The hydrolysis of ester‐containing poly(PA), poly( 2a) , provided poly(3,4‐dicarboxyPA) [poly ( 3 )], which could not be obtained directly by the polymerization of the corresponding monomer. The solubility properties of the present polymers were different from those of poly(PA) having no polar group; that is, poly( 2a )–poly( 2d ) dissolved in ethyl acetate and poly( 4 ) dissolved in N,N‐dimethylformamide, while poly(PA) was insoluble in such solvents. Ester‐group‐containing polymers [poly( 2a )–poly( 2d )] afforded free‐standing membranes by casting from THF solutions. The membrane of poly( 2a ) showed high carbon dioxide permselectivity against nitrogen (PCO2/PN2 = 62). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5943–5953, 2006  相似文献   

11.
We have measured 1H and 19F NMR relaxation times T1, T, and T2, and diffusion constants, in trace penetrants hexafluorobenzene and n-hexadecane dissolved in stretched cis-polyisoprene, as function of temperature, rubber elongation, and angle with respect to the stretch direction. Values of T1 and T2 in the rubber were also measured. At all temperatures (—40 ≤ T ≤ 85°C), T1 in rubber and penetrants is isotropic and independent of elongation; the differences between rubber and penetrants are related to penetrant diffusion. All T2 above—15°C are anisotropic and elongation dependent, and follow a motional narrowing model. For the penetrants, averaging the dipolar interactions implies averaging over a diffusion path; this correctly reproduces the observed much higher T2 anisotropy in the penetrants. Penetrant diffusion rates, however, are essentially isotropic and elongation independent. These effects depend only weakly on the shape of the penetrant molecules.  相似文献   

12.
Highly permeable glassy polymeric membranes based on poly (1‐trimethylsilyl‐1‐propyne) (PTMSP) and a polymer of intrinsic porosity (PIM‐1) were investigated for water sorption, water permeability and the separation of CO2 from N2 under humid mixed gas conditions. The water sorption isotherms for both materials followed behavior indicative of multilayer adsorption within the microvoids, with PIM‐1 registering a significant water uptake at very high water activities. Analysis of the sorption isotherms using a modified dual sorption model which accounts for such multilayer effects gave Langmuir affinity constants more consistent with lighter gases than the use of the standard dual mode approach. The water permeability through PTMSP and PIM‐1 was comparable over the water activities studied, and could be successfully model ed through a dual mode sorption model with a concentration dependent diffusivity. The water permeability through both membranes as a function of temperature was also measured, and found to be at a minimum at 80 ° C for PTMSP and 70 °C for PIM‐1. This temperature dependence is a function of reducing water solubility in both membranes with increasing temperature countered by increasing water diffusivity. The CO2 ‐ N2 mixed gas permeabilities through PTMSP and PIM‐1 were also measured and model ed through dual mode sorption theory. Introducing water vapour further reduced both the CO2 and N2 permeabilities. The plasticization potential of water in PTMSP was determined and indicated water swelled the membrane increasing CO2 and N2 diffusivity, while for PIM‐1 a negative potential implied that water filling of the microvoids hampered CO2 and N2 diffusion through the membrane. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 719–728  相似文献   

13.
Using multilayer composite hollow fiber membranes consisting of a sealing layer (silicone rubber), a selective layer (poly(4-vinylpyridine)), and a support substrate (polysulfone), we have determined the key parameters for fabricating high-performance multilayer hollow fiber composite membranes for gas separation. Surface roughness and surface porosity of the support substrate play two crucial roles in successful membrane fabrication. Substrates with smooth surfaces tend to reduce defects in the selective layer to yield composite membranes of better separation performance. Substrates with a high surface porosity can enhance the permeance of composite membranes. However, SEM micrographs show that, when preparing an asymmetric microporous membrane substrate using a phase-inversion process, the higher the surface porosity, the greater the surface roughness. How to optimize and compromise the effect of both factors with respect to permselectivity is a critical issue for the selection of support substrates to fabricate high-performance multilayer composite membranes. For a highly permeable support substrate, pre-wetting shows no significant improvement in membrane performance. Composite hollow fiber membranes made from a composition of silicone rubber/0.1–0.5 wt% poly(4-vinylpyridine)/25 wt% polysulfone show impressive separation performance. Gas permeances of around 100 GPU for H2, 40 GPU for CO2, and 8 GPU for O2 with selectivities of around 100 for H2/N2, 50 for CO2/CH4, and 7 for O2/N2 were obtained.  相似文献   

14.
In this lecture the measurements and analyses of the isotropic and anisotropic diffusion coefficients(D) of rod-like polypeptide such as poly(γ-L-glutamate)(PLG) with n-alkyl side chains, of which the main chain takes the α-helical conformation, as a function of the main chain length in the thermotropic and lyotropic liquid crystalline phases over a wide range of temperatures from 30 to 80°C by means of pulse high field-gradient spin echo 1H NMR method have been introduced. In the anisotropic diffusion, the D value in direction parallel to the α-helical chain axis is found to be much larger than the D value in direction perpendicular to the α-helical chain axis. The diffusion process is followed by the Kirkwood theory. Further, it is described that the diffusion in the nematic liquid crystalline phase is much slower than that in the isotropic phase.  相似文献   

15.
Carbon molecular sieve (CMS) membranes are attractive candidates to meet requirements for challenging gas separations. The added ability to maintain such intrinsic properties in an asymmetric morphology with a structure that we term a “Pseudo Wheel+Hub & Spoke” asymmetric form offers new opportunities. For CMS membrane, specifically, the structure provides both selective layer support and low flow resistance even for high feed pressures and fluxes in CO2 removal from natural gas. This capability is unavailable to even rigid glassy polymers due to the much higher modulus of CMS materials. Combining precursor asymmetric hollow fiber formation and optimized pyrolysis creates a defect free CMS proof-of-concept membrane for this application. Facile formation of the sheath-core spun precursor with a 6FDA-DAM sheath and Matrimid® core also avoids the need to seal defects before or after the carbonization of the precursors. The composite CMS membrane shows CO2/CH4 (50 : 50) mixed gas feed with an attractive CO2/CH4 selectivity of 64.3 and CO2 permeance of 232 GPU at 35 °C. A key additional benefit of the approach is reduction in use of the more costly high performance 6FDA-DAM in a composite sheath-core CMS membrane with the “Pseudo Wheel+Hub & Spoke” structure.  相似文献   

16.
In this work, the films of poly(ether-block-amide) (Pebax 1657) and hydrophilic/hydrophobic silica nanoparticles (0–10 wt%) were coated on a poly(vinyl chloride) (PVC) ultrafiltration membrane to form new mixed matrix composite membranes (MMCMs) for CO2/N2 separation. The membranes were characterized by SEM, FTIR, DSC and XRD. Successful formation of a non-porous defect-free dense top layer with ~4 μm of thickness and also uniform dispersion of silica nanoparticles up to 8 wt% loading in Pebax matrix were confirmed by SEM images. The gas permeation results showed an increase in the permeance of all gases and an increase in ideal CO2/N2 selectivity with the increase in silica nanoparticle contents. Comparison between the incorporation of hydrophilic and hydrophobic silica nanoparticle into Pebax matrix revealed that the great enhancement of CO2 solubility is the key factor for the performance improvement of Pebax + silica nanoparticle membranes. The best separation performance of the hydrophilic silica nanoparticle-incorporated Pebax/PVC membrane for pure gases (at 1 bar and 25 °C) was obtained with a CO2 permeability of 124 barrer and an ideal CO2/N2 selectivity of 76, i.e., 63 and 35% higher than those of neat Pebax membrane, respectively. The corresponding values for hydrophobic silica nanoparticle-incorporated Pebax/PVC membrane were 107 barrer for CO2 permeability and 61 for ideal CO2/N2 selectivity. Also the performances of MMCMs improved upon pressure increase (1–10 bar) owing to the shift in plasticizing effect of CO2 towards the higher pressures. In addition, an increase in permeabilities with a decrease in ideal selectivity was observed upon temperature increase (25–50 °C) due to the intensification of chain mobility.  相似文献   

17.
He, CO_2, O_2, N_2, CH_4, C_3H_8, and t-C_4H_(10) gas permeability coefficients and diffusion coefficients of poly(4-methylpentene-1) (PMP) with various degrees of crystallization were plotted against the degree of crystallization. The plotdemonstrated a linear relationship. The gas permeability coefficient and diffusion coefficient of pure amorphous and purecrystalline PMPs were evaluated by a linear extrapolation to zero and 100% crystallinity, respectively. The relationshipbetween the diffusion coefficient of crystalline parts of PMP and the kinetic diameter of penetrant gases was discussed.Syndiotactic polystyrene (SPS) could exist as δ form crystals complexed with organic solvents such as benzene, toluene,xylene, and ethylbenzene. The mesophase of SPS is prepared by annealing the δ form of crystalline complexes at a certaintemperature for 1 h. The desorption of solvent during annealing almost does not result in changes of both the conformation ofbackbone chains and the crystal lattice. We could prepare the mesophase containing molecular cavities with the size andshape of the organic solvent molecules. The mesophase could sorb the same solvent after the manner of Langmuir sorption atlow vapor pressure range while this would not be the case for solvents of different size and shape. This suggests a molecularrecognition of organic solvent, and mesophase SPS might be useful for separation membrane and adsorptive material.  相似文献   

18.
New silicon‐based polycationic microspheres, which consist of alternating 3,3‐dimethyl‐3‐silapentamethylene and N,N′‐diethylethylenediamine, were prepared. The deswelling of the poly(silamine) microspheres by means of pH‐jump experiments revealed the formation of an extremely stable skin layer. The layer could be kept at the interface between particle core and skin layer and shows a significantly different chemical potential. This may be explained by a limited osmotic‐pressure wave due to the high activation energy associated with the conformational changes.  相似文献   

19.
Permeation of eight gases (He, Ne, Ar, Kr, O2, N2, CO2, and CH4) in three isomeric poly(vinyl methylbenzoates) was measured by the time-lag method, and the effects of the shape of side groups on gas transport in the polymers were investigated. The p-methylphenyl side group of poly(vinyl p-methylbenzoate), which increases both interchain and intrachain distances, caused an increase in gas diffusivity. The diffusivity and density data were consistent with free volume theory. Two other isomeric polymers, poly(vinyl o-methylbenzoate) and poly(vinyl m-methylbenzoate), had lower gas diffusivities than poly(vinyl p-methylbenzoate) and poly(vinyl benzoate). The o-methyl and m-methyl groups on the phenyl ring were found to hinder gas diffusion, i.e., decrease the free volume. In contrast, the solubility of the gases in all these polymers was similar because of their similar chemical structures. The effects of hydroxyl groups also were investigated by the use of poly(vinyl m-methylbenzoate) containing a small number of vinyl alcohol units. The decrease in gas diffusivity was attributed to the decrease of free volume due to hydrogen bonding, but the change of gas solubility was still negligible.  相似文献   

20.
The poly(ethylene oxide) (PEO) was introduced by the cross-linking method in the commercial Matrimid 5218. The two kinds of membranes were prepared from the Matrimid 5218 and the cross-linkers poly(propylene glycol) block poly(ethylene glycol) block poly(propylene glycol) diamine (PPG/PEG/PPGDA) with different molecular weights. The cross-linking reaction process was monitored by FTIR. The cross-linked Matrimid 5218 membranes display excellent CO2 permeability and CO2/light gas selectivity. The effects of cross-linkers with different molecular weights on gel content, thermal properties and H2, CO2, N2 and CH4 gas transport properties were reported. The effect of temperature on gas transport properties was also reported, and the permeabilities of these materials as a function of temperature were compared with other gas membrane materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号