首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new arylbenzofuran, 3',5'-dihydroxy-6-methoxy-7-prenyl-2-arylbenzofuran (1), and 25 known compounds, including moracin R (2), moracin C (3), moracin O (4), moracin P (5), artoindonesianin O (6), moracin D (7), alabafuran A (8), mulberrofuran L (9), mulberrofuran Y (10), kuwanon A (11), kuwanon C (12), kuwanon T (13), morusin (14), kuwanon E (15), sanggenon F (16), betulinic acid (17), uvaol (18), ursolic acid (19), β-sitosterol (20), oxyresveratrol 2-O-β-D-glucopyranoside (21), mulberroside A (22), mulberroside B (23), 5,7-dihydroxycoumarin 7-O-β-D-glucopyranoside (24), 5,7-dihydroxycoumarin 7-O-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranoside (25) and adenosine (26), were isolated from Morus alba var. multicaulis Perro. (Moraceae). Their structures were determined by spectroscopic methods. The prenyl-flavonoids 11-14, 16, triterpenoids 17,18 and 20 showed significant inhibitory activity towards the differentiation of 3T3-L1 adipocytes. The arylbenzofurans 1-10 and prenyl-flavonoids 11-16 also showed significant nitric oxide (NO) production inhibitory effects in RAW264.7 cells.  相似文献   

2.
The anti-inflammatory and anticancer activities of a methanol extract of the rhizome of Cnidium officinale were investigated. Four compounds, namely falcarindiol (1), 6-hydroxy-7-methoxy-dihydroligustilide (2), ligustilidiol (3), and senkyunolide H (4) were isolated from the extract of the rhizome of Cnidium officinale and their structures were elucidated by analysis of their spectroscopic data and by comparison with previously reported data. These compounds showed anti-inflammatory activities, measured as inhibition of nitric oxide (NO) release in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells, with IC(50) values of 4.31 ± 5.22, 152.95 ± 4.23, 72.78 ± 5.13, and 173.42 ± 3.22 μM, respectively. They also inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA expression induced by LPS. Among these compounds, falcarindiol (1) was found to have anti-proliferative effect against MCF-7 human breast cancer cells by induction of a G(0)/G(1) cell cycle block of the cells, with an IC(50) value of 35.67 μM. Typical apoptotic effects were observed by phase contrast microscopy and were also exhibited in fluorescence microscopy with Hoechst 33342 staining. In addition, falcarindiol induced apoptosis through strongly increased mRNA expression of Bax and p53, and slightly reduced Bcl-2 mRNA levels in a dose dependent manner. This study suggested that C. officinale extract and its components would be valuable candidates in therapeutic applications for anti-inflammatory and anti-cancer agents.  相似文献   

3.
Abstract

Mulberry (Morus alba L.) root bark (MRB) was extracted using methanol and the extracts were subjected to tests of anti-inflammatory effects. The ethyl acetate fraction demonstrated the best anti-inflammatory effects. Purified compounds, sanggenon B, albanol B and sanggenon D, showed inhibitory effects on NO production in LPS-stimulated RAW264.7 cells and albanol B demonstrated the best anti-inflammatory effects. Regarding the underlying molecular mechanisms, further investigations showed that treatments with Albanol B reduced production of pro-inflammatory cytokines and decreased expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). These results would contribute to development of novel anti-inflammatory drugs from MRB.  相似文献   

4.
From the water extract of Brazilian Tabebuia avellanedae, two new iridoids (1, 2) and a new phenylethanoid glycoside (3) have been isolated together with twelve known compounds (4-15). Their structures were determined based on the spectroscopic data. The isolated compounds inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-activated macrophage-like J774.1 cells. Compounds 1, 3, 10, 11, and 12 showed inhibitory activities more potent (IC50, 13.8-26.1 microg/ml) than a positive control N(G)-monomethyl-L-arginine (L-NMMA; IC50, 27.4 microg/ml).  相似文献   

5.
Biorenovation, a microbial enzyme-assisted degradation process of precursor compounds, is an effective approach to unraveling the potential bioactive properties of the derived compounds. In this study, we obtained a new compound, prunetin 4′-O-phosphate (P4P), through the biorenovation of prunetin (PRN), and investigated its anti-inflammatory effects in lipopolysaccharide (LPS)-treated RAW 264.7 macrophage cells. The anti-inflammatory effect of P4P was evaluated by measuring the production of prostaglandin-E2 (PGE2), nitric oxide (NO), which is an inflammation-inducing factor, and related cytokines such as tumor necrosis factor-α (TNFα), interleukin-1β (IL1β), and interleukin-6 (IL6). The findings demonstrated that P4P was non-toxic to cells, and its inhibition of the secretion of NO—as well as pro-inflammatory cytokines—was concentration-dependent. A simultaneous reduction in the protein expression level of pro-inflammatory proteins such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) was observed. Moreover, the phosphorylation of mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK), p38 MAPK (p38), and nuclear factor kappa B (NFκB) was downregulated. To conclude, we report that biorenovation-based phosphorylation of PRN improved its anti-inflammatory activity. Cell-based in vitro assays further confirmed that P4P could be applied in the development of anti-inflammatory therapeutics.  相似文献   

6.
Three new guaiane type sesquiterpenes were isolated from the methanolic extract of the fruits of Torilis japonica together with a known compound, torilin (1). Their structures were established as 11-acetoxy-8-isobutyryl-4-guaien-3-one (2), 11-acetoxy-8-methacrylyl-4-guaien-3-one (3), and 11-acetoxy-8-propionyl-4-guaien-3-one (4) by spectroscopic methods. These compounds inhibited lipopolysaccharide (LPS)-induced nitric oxide production in murine macrophages RAW 264.7 cells.  相似文献   

7.
Chemical investigation of the root bark of Morus alba led to the isolation of a new flavone, dioxycudraflavone A (1) and a new 2-arylbenzofuran, 5-hydroxyethyl moracin M (2), together with seven known compounds namely sanggenon V (3), morusin (4), morusignin L (5), licoflavone C (6), moracin C (7), alfafuran (8) and mulberrofuran G (9). The structure elucidation of these compounds was based on analyses of spectroscopic data including 1D, 2D NMR and HR-ESI-MS. All compounds were evaluated for the α-glucosidase inhibitory and cytotoxic activities. Compounds 24, 8 and 9 exhibited strong α-glucosidase inhibitory activities with IC50 less than 10 μM, while only 4 and 9 showed moderate cytotoxic effects against lung cancer cells.  相似文献   

8.
Mitrephora sirikitiae Weeras., Chalermglin & R.M.K. Saunders has been reported as a rich source of lignans that contribute to biological activities and health benefits. However, cellular anti-inflammatory effects of M. sirikitiae leaves and their lignan compounds have not been fully elucidated. Therefore, this study aimed to investigate the anti-inflammatory activities of methanol extract of M. sirikitiae leaves and their lignan constituents on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 mouse macrophage cells. Treatment of RAW 264.7 cells with the methanol extract of M. sirikitiae leaves and its isolated lignans, including (−)-phylligenin (2) and 3′,4-O-dimethylcedrusin (6) significantly decreased LPS-induced prostaglandin E2 (PGE2) and nitric oxide (NO) productions. These inhibitory effects of the extract and isolated lignans on LPS-induced upregulation of PGE2 and NO productions were derived from the suppression of cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) production, respectively. In addition, treatment with 2-(3,4-dimethoxyphenyl)-6-(3,5-dimethoxyphenyl)-3,7-dioxabicyclo[3.3.0]octane (3) and mitrephoran (5) was able to suppress LPS-induced tumor necrosis factor alpha (TNF-α) secretion and synthesis in RAW 264.7 cells. These results demonstrated that M. sirikitiae leaves and some isolated lignans exhibited potent anti-inflammatory activity through the inhibition of secretion and synthesis of PGE2, NO, and TNF-α.  相似文献   

9.
Four new sesquiterpene coumarin derivatives, fukanemarin B (1), fukanefuromarin E (2), fukanefuromarin F (3) and fukanefuromarin G (5) were isolated from a 80% aqueous methanol extract of the roots of Ferula fukanensis. The structures were elucidated based on spectral evidence, especially heteronuclear multiple-bond connectivity (HMBC) and high-resolution MS. The 80% aqueous methanol extract of the roots of Ferula fukanensis (FFE) and the sesquiterpene coumarin derivatives inhibited nitric oxide (NO) production and inducible NO synthase (iNOS) gene expression by a murine macrophage-like cell line (RAW 264.7), which was activated by lipopolysaccharide (LPS) and recombinant mouse interferon-gamma (IFN-gamma).  相似文献   

10.
Bidens pilosa L. (Asteraceae) has been used historically in traditional Asian medicine and is known to have a variety of biological effects. However, the specific active compounds responsible for the individual pharmacological effects of Bidens pilosa L. (B. pilosa) extract have not yet been made clear. This study aimed to investigate the anti-inflammatory phytochemicals obtained from B. pilosa. We isolated a flavonoids-type phytochemical, isookanin, from B. pilosa through bioassay-guided fractionation based on its capacity to inhibit inflammation. Some of isookanin’s biological properties have been reported; however, the anti-inflammatory mechanism of isookanin has not yet been studied. In the present study, we evaluated the anti-inflammatory activities of isookanin using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We have shown that isookanin reduces the production of proinflammatory mediators (nitric oxide, prostaglandin E2) by inhibiting the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated macrophages. Isookanin also inhibited the expression of activator protein 1 (AP-1) and downregulated the LPS-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-jun NH2-terminal kinase (JNK) in the MAPK signaling pathway. Additionally, isookanin inhibited proinflammatory cytokines (tumor necrosis factor-a (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β)) in LPS-induced THP-1 cells. These results demonstrate that isookanin could be a potential therapeutic candidate for inflammatory disease.  相似文献   

11.
From the methanolic extract of Indonesian Orthosiphon stamineus, nine new highly-oxygenated isopimarane-type diterpenes [7-O-deacetylorthosiphol B (1), 6-hydroxyorthosiphol B (2), 3-O-deacetylorthosiphol I (3), 2-O-deacetylorthosiphol J (4), siphonols A-E (5-9)] have been isolated together with nine known diterpenes [orthosiphols H (10), K (11), M (12) and N (13); staminols A (14) and B (15); neoorthosiphols A (16) and B (17); norstaminol A (18)]. Their structures were determined based on the spectroscopic data. The isolated diterpenes inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-activated macrophage-like J774.1 cells. Compounds 4-7, 9, 10, 14, and 17 showed inhibitory activities more potent (IC(50), 10.8-25.5 microM) than a positive control N(G)-monomethyl-L-arginine (L-NMMA; IC(50), 26.0 microM).  相似文献   

12.
13.
14.
Two new lignans, termed pharsyringaresinol (1) and pharbilignoside (2), a new phenylethanoid glycoside, termed pharbiniloside (3), and 22 known compounds, were isolated from the ethanol extract of the seeds of Pharbitis nil. The structures of the new compounds (1-3) were determined on the basis of spectroscopic analyses, including 2D-NMR and circular dichroism (CD) spectroscopy studies. Among the isolates, compounds 2, 11, 12, and 24 exhibited significant cytotoxicity against human tumor cell lines (A549, SK-OV-3, SK-MEL-2, and HCT-15) with IC(50) values ranging from 8.07 to 28.30 μM. In addition, compounds 11, 12 and 24 potently inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-activated BV-2 cells, a microglia cells with IC(50) values ranging from 14.7 to 19.9 μM.  相似文献   

15.
Microglia play a significant role in immune defense and tissue repair in the central nervous system (CNS). Microglial activation and the resulting neuroinflammation play a key role in the pathogenesis of neurodegenerative disorders. Recently, inflammation reduction strategies in neurodegenerative diseases have attracted increasing attention. Herein, we discovered and evaluated the anti-neuroinflammatory potential of compounds from the Antarctic fungi strain Aspergillus sp. SF-7402 in lipopolysaccharide (LPS)-stimulated BV2 cells. Four metabolites were isolated from the fungi through chemical investigations, namely, 5-methoxysterigmatocystin (1), sterigmatocystin (2), aversin (3), and 6,8-O-dimethylversicolorin A (4). Their chemical structures were elucidated by extensive spectroscopic analysis and HR-ESI-MS, as well as by comparison with those reported in literature. Anti-neuroinflammatory effects of the isolated metabolites were evaluated by measuring the production of nitric oxide (NO), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 in LPS-activated microglia at non-cytotoxic concentrations. Sterigmatocystins (1 and 2) displayed significant effects on NO production and mild effects on TNF-α and IL-6 expression inhibition. The molecular mechanisms underlying this activity were investigated using Western blot analysis. Sterigmatocystin treatment inhibited NO production via downregulation of inducible nitric oxide synthase (iNOS) expression in LPS-stimulated BV2 cells. Additionally, sterigmatocystins reduced nuclear translocation of NF-κB. These results suggest that sterigmatocystins present in the fungal strain Aspergillus sp. are promising candidates for the treatment of neuroinflammatory diseases.  相似文献   

16.
Species of Podocarpus are used traditionally in their native areas for the treatment of fevers, asthma, coughs, cholera, chest pain, arthritis, rheumatism, and sexually transmitted diseases. To identify natural products having efficacy against inflammatory bowel disease (IBD), we identified a new, 16-hydroxy-4β-carboxy-O-β-D-glucopyranosyl-19-nor-totarol (4) together with three known diterpenoids from P. macrophyllus. Furthermore, all the extracts, fractions, and isolates 1–4 were investigated for their anti-inflammatory effects by assessing the expression on nitric oxide (NO) production and proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 and HT-29 cells. Among them, nagilactone B (2) exhibited a potent anti-inflammatory effect against NO production on RAW 264.7 cells; therefore, nagilactone B was further assessed for anti-inflammatory activity. Western blot analysis revealed that nagilactone B significantly decreased the expression of LPS-stimulated protein, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and phosphorylated extracellular regulated kinase (pERK)1/2. In addition, nagilactone B downregulated tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-8 levels in LPS-induced macrophages and colonic epithelial cells. To our best knowledge, this is the first report on the inhibitory effect of nagilactone B (pure state) and rakanmakilactone G against NO production in LPS-stimulated RAW 264.7 cells. Thus, diterpenoids isolated from P. macrophyllus could be employed as potential therapeutic phytochemicals for IBD.  相似文献   

17.
Qin Pi (Fraxinus chinensis Roxb.) is commercially used in healthcare products for the improvement of intestinal function and gouty arthritis in many countries. Three new secoiridoid glucosides, (8E)-4′′-O-methylligstroside (1), (8E)-4′′-O-methyldemethylligstroside (2), and 3′′,4′′-di-O-methyl-demethyloleuropein (3), have been isolated from the stem bark of Fraxinus chinensis, together with 23 known compounds (4–26). The structures of the new compounds were established by spectroscopic analyses (1D, 2D NMR, IR, UV, and HRESIMS). Among the isolated compounds, (8E)-4′′-O-methylligstroside (1), (8E)-4′′-O-methyldemethylligstroside (2), 3′′,4′′-di-O-methyldemethyloleuropein (3), oleuropein (6), aesculetin (9), isoscopoletin (11), aesculetin dimethyl ester (12), fraxetin (14), tyrosol (21), 4-hydroxyphenethyl acetate (22), and (+)-pinoresinol (24) exhibited inhibition (IC50 ≤ 7.65 μg/mL) of superoxide anion generation by human neutrophils in response to formyl-L-methionyl-L-leuckyl-L-phenylalanine/cytochalasin B (fMLP/CB). Compounds 1, 9, 11, 14, 21, and 22 inhibited fMLP/CB-induced elastase release with IC50 ≤ 3.23 μg/mL. In addition, compounds 2, 9, 11, 14, and 21 showed potent inhibition with IC50 values ≤ 27.11 μM, against lipopolysaccharide (LPS)-induced nitric oxide (NO) generation. The well-known proinflammatory cytokines, tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6), were also inhibited by compounds 1, 9, and 14. Compounds 1, 9, and 14 displayed an anti-inflammatory effect against NO, TNF-α, and IL-6 through the inhibition of activation of MAPKs and IκBα in LPS-activated macrophages. In addition, compounds 1, 9, and 14 stimulated anti-inflammatory M2 phenotype by elevating the expression of arginase 1 and Krüppel-like factor 4 (KLF4). The above results suggested that compounds 1, 9, and 14 could be considered as potential compounds for further development of NO production-targeted anti-inflammatory agents.  相似文献   

18.
Two new phloroglucinol derivatives, mallotophilippen A (1). and B (2). were isolated from the fruits of Mallotus philippensis. These compounds were identified, using chemical and spectral data, as 1-[5,7-dihydroxy-2,2-dimethyl-6-(2,4,6-trihydroxy-3-isobutyryl-5-methyl-benzyl)-2H-chromen-8-yl]-2-methyl-butan-1-one and 1-[6-(3-Acetyl-2,4,6-trihydroxy-5-methyl-benzyl)-5,7-dihydroxy-2,2-dimethyl-2H-chromen-8-yl]-2-methyl-butan-1-one, respectively. They inhibited nitric oxide (NO) production and inducible NO synthase (iNOS) gene expression by a murine macrophage-like cell line (RAW 264.7), which was activated by lipopolysaccharide (LPS) and recombinant mouse interferon-gamma (IFN-gamma). Furthermore, they inhibited histamine release from rat peritoneal mast cells induced by Compound 48/80. These results suggest that the novel phloroglucinol derivatives have anti-inflammatory effects.  相似文献   

19.
beta-Carotene has shown antioxidant and anti-inflammatory activities; however, its molecular mechanism has not been clearly defined. We examined in vitro and in vivo regulatory function of beta-carotene on the production of nitric oxide (NO) and PGE(2) as well as expression of inducible NO synthase (iNOS), cyclooxygenase-2, TNF-alpha, and IL-1beta. beta-Carotene inhibited the expression and production of these inflammatory mediators in both LPS-stimulated RAW264.7 cells and primary macrophages in a dose-dependent fashion as well as in LPS-administrated mice. Furthermore, this compound suppressed NF-kappaB activation and iNOS promoter activity in RAW264.7 cells stimulated with LPS. beta-Carotene blocked nuclear translocation of NF-kappaB p65 subunit, which correlated with its inhibitory effect on IkappaBalpha phosphorylation and degradation. This compound directly blocked the intracellular accumulation of reactive oxygen species in RAW264.7 cells stimulated with LPS as both the NADPH oxidase inhibitor diphenylene iodonium and antioxidant pyrrolidine dithiocarbamate did. The inhibition of NADPH oxidase also inhibited NO production, iNOS expression, and iNOS promoter activity. These results suggest that beta-carotene possesses anti-inflammatory activity by functioning as a potential inhibitor for redox-based NF-kappaB activation, probably due to its antioxidant activity.  相似文献   

20.
Three novel chalcone derivatives, mallotophilippens C (1), D (2) and E (3) were isolated from the fruits of Mallotus philippinensis MUELL. ARG. These compounds were identified, using chemical and spectral data, as 1-[6-(3,7-dimethyl-octa-2,6-dienyl)-5,7-dihydroxy-2,2-dimethyl-2H-chromen-8-yl]-3-(4-hydroxy-phenyl)-propenone, 3-(3,4-dihydroxy-phenyl)-1-[6-(3,7-dimethyl-octa-2,6-dienyl)-5,7-dihydroxy-2,2-dimethyl-2H-chromen-8-yl]-propenone and 1-[5,7-dihydroxy-2-methyl-6-(3-methyl-but-2-enyl)-2-(4-methyl-pent-3-enyl)-2H-chromen-8-yl]-3-(3,4-dihydroxy-phenyl)-propenone, respectively. They inhibited nitric oxide (NO) production and inducible NO synthase (iNOS) gene expression by a murine macrophage-like cell line (RAW 264.7), which was activated by lipopolysaccharide (LPS) and recombinant mouse interferon-gamma (IFN-gamma). Furthermore, they downregulated cyclooxygenase-2 (COX-2) gene, interleukin-6 (IL-6) gene and interleukin-1beta (IL-1beta) gene expression. These results suggest that they have anti-inflammatory and immunoregulatory effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号