首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Cationic latex particles with surface amino groups were prepared by a multistep batch emulsion polymerization. In the first one, two or three steps, monodisperse cationic latex particles to be used as the seed were synthesized. In the third and fourth steps, the amino‐functionalized monomer aminoethylmethacrylate hydrochloride was used to synthesize the final functionalized latex particles. Three different azo initiators 2,2′‐azobisisobutyramidine dihydrochloride, 2,2′‐azobisdimethylenisobutyramidine dihydrochloride, and 2,2′‐azobisisobutyronitrile were used as initiators. Hexadecyltrimethylammonium bromide was the emulsifier. To characterize the final latices, conversions were obtained gravimetrically, and particle size distributions and average particle diameters were determined by transmission electron microscopy and photon correlation spectroscopy. The amount of amino groups was determined by conductimetric titrations. Colloidal aspects were ascertained by measuring the electrophoretic mobilities. Activation of these particles with glutaraldehyde produced an efficient reagent for latex‐enhanced immunoassay. The covalent coupling efficiency (protein covalently bound with respect to the total amount of protein adsorbed) was compressed between 50 and 80%. The developed immunoreagent was applied to the measurement of serum ferritin concentration in a new turbidimetric procedure that was compared with a commercial nephelometric method; the results obtained with both methods demonstrated that the two procedures correlated well (r = 0.992). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2404–2411, 2003  相似文献   

2.
Thermosensitive microspheres with 0.4–1.2 μm diameter consisting of a polystyrene core and poly(N-isopropylacrylamide) (polyNIPAAm) branches on their surfaces were prepared by the free radical polymerization of a polyNIPAAm macromonomer and styrene in ethanol. Electron spectroscopy for chemical analysis (ESCA) of the microsphere surface suggested that polyNIPAAm chains were favorably located on the surface of the microspheres. The morphology of the microspheres was observed by transmission electron micrograph (TEM) and the particle size of was estimated by submicron particle analyzer. The molecular weight of the polyNIPAAm macromonomer, the ratio of the macromonomer and styrene, and the polymerization temperature affected the particle size. Thermosensitive properties of polyNIPAAm-coated polystyrene microspheres were evaluated by the turbidity of their dispersion solutions and the hydrodynamic size of the miocrospheres. The transmittance in dispersion solutions changed clearly, similar to oligoNIPAAm and polyNIPAAm macromonomers. In addition, the particle size of microspheres decreased with rising temperature. These results were explained by the thermosensitivity of polyNIPAAm branches on the microsphere surface. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
The adsorption of bovine serum albumin (BSA) onto polystyrene latexes bearing various amounts of sugar moieties has been investigated as a function of pH and ionic strength and the results were compared to those for bare polystyrene latexes having negative surface charges. The functionalized latexes were produced by seeded copolymerization of (0.3 μm) liposaccharidic monomer onto polystyrene particles obtained by soap-free emulsion polymerization of styrene using potassium persulfate as initiator. At first, the electrophoretic mobility behavior of the various latexes was examined as a function of pH: a significant decrease was observed in the case of saccharide-containing latex particles compared to the bare particles. The adsorption of BSA onto these latexes exhibited a reduced amount of adsorbed BSA for those latex particles bearing saccharide groups. This adsorbed amount depends on the yield of saccharidic monomer incorporated onto the surfaces of the latex particles.  相似文献   

4.
The electrophoretic mobility of poly(styrene-co-acrolein) microspheres was studied as a function of storage time. It was shown that pHIEP2.0 is retained but the abnormal dependence of electrophoretic mobility on NaCl concentration is replaced by classical dependence. When comparing chemisorption of bovine serum albumin (BSA) on the microsphere surface for various latex samples, the differences in the isotherm patterns was revealed; moreover, the prevalence of surface concentration of carboxyl groups over that of aldehyde groups resulted in a decrease in adsorption. After the modification of the microspheres by protein, the values of pHIEPfall within the range of 3.5–5.0 and their dependence on the amount of surface-bound protein passes the minimum. The results obtained are discussed in terms of the different arrangement patterns of protein molecules on the microsphere surface and the changes of BSA macromolecule conformations under the effect of a dispersion medium and as a result of chemical interaction with the polymer surface.  相似文献   

5.
BSA adsorption onto negatively and positively charged polystyrene nanoparticles was investigated. The nanoparticles were characterized in terms of particle size, zeta potential, surface group density, and morphology. The adsorption behavior of BSA on the particle surface, as a function of pH and overall charge of the particle, was studied using ITC. Different thermodynamic data such as enthalpy changes upon binding and stoichiometry of the systems were determined and discussed. The degree of surface coverage with BSA was calculated using the thermodynamic data. The cellular uptake of particles before and after BSA adsorption was studied using HeLa cells in the presence and absence of supplemented FCS in the cell culture medium.  相似文献   

6.
Submicron microspheres were used directly without ligand coupling for the batch and continuous separations of proteins. In the batch experiments for separating BSA (bovine serum albumin) from BHb (bovine hemoglobin), introducing both hydrophobic effects for BSA and electrostatic repulsion for BHb (and vice versa) was required for high selectivity, and microspheres with low number density of surface groups were advantageous. For the continuous experiments, the utilization of a stirred cell was successful, where the microspheres were in the form of latex with good dispersion of particles. The flow rate without a pump was 0.5–1.3 ml min−1, and the ratio of BSA and BHb was varied. In the experiments for eliminating BHb from BSA, elution curves of BHb corresponded to the single component breakthrough curves, while those for BSA did not. The latter is believed to be due to the interference by BHb in the adsorption of BSA.  相似文献   

7.
Biodegradable microspheres have been widely used in drug/protein delivery system. In this paper, a modified ionotropic gelation method combined with a high voltage electrostatic field was developed to prepare protein-loaded chitosan microspheres. Bovine serum albumin (BSA) was chosen as a model protein. The preparation process and major parameters were discussed and optimized. The morphology, particle size, encapsulation efficiency and in vitro release behavior of the prepared microspheres were investigated. The results revealed that the microspheres exhibited good sphericity and dispersity when the mixture of sodium tripolyphosphate (TPP) and ethanol was applied as coagulation solution. Higher encapsulation efficiency (>90%) was achieved for the weight ratio of BSA to chitosan below 5%. 35% of BSA was released from the microspheres cured in 3% coagulation solution, and more than 50% of BSA was released from the microspheres cured in 1% coagulation solution at pH 8.8. However, only 15% of BSA was released from the microspheres cured in 1% coagulation solution at pH 4. The results suggested that ionotropic gelation method combined with a high voltage electrostatic field will be an effective method for fabricating chitosan microspheres for sustained delivery of protein.  相似文献   

8.
Polymeric microspheres have been used in a broad range of applications from chromatographic separation techniques to analysis of air flow over aerodynamic surfaces. The preparation of microspheres from many polymer families has consequently been extensively studied using a variety of synthetic approaches. Although there are a myriad of polymeric microsphere synthesis methods, free‐radical initiated emulsion polymerization is one of the most common techniques. In this work, poly(styrene‐co‐methyl methacrylate) microspheres were synthesized via surfactant‐free emulsion polymerization. The effects of co‐monomer composition and addition time on particle size distribution, particle formation, and particle morphology were investigated. Particles were characterized using dynamic light scattering and scanning electron microscopy to gain further insight into particle size and size distributions. Reaction kinetics were analyzed through consideration of characterization results. A particle formation mechanism for poly(styrene‐co‐methyl methacrylate) microspheres was proposed based on characterization results and known reaction kinetics. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2249–2259  相似文献   

9.
Thiol-ended polyethylene oxide (I) has been prepared from the esterification of thioglycolic acid with monomethylether of polyoxyethylene glycol. Emulsion polymerization of styrene (and, in a few cases, methylmethacrylate as comonomer) was carried out in the presence of I using either water-soluble azo initiator or t-butylhydroperoxide. In the former case, bimodal particle size distribution was obtained while monodisperse latexes could be prepared in the latter case. Then a redox system was formed from I and t-BuOOH so that I was both an initiator and a transfer agent. Good steric stabilization of the latexes was observed. The polyethylene oxide sequence of I was partly incorporated at the surface of the latex particles, but the incorporation yield remained limited (between 7 and 18%). Most of the resdue of I remained in the serum.  相似文献   

10.
Proteinaceous microspheres have a wide range of biomedical applications, including their use as drug delivery systems. On the other hand, bioactive and antimicrobial textiles are promising substrates for medical care, in particular, as wound‐dressings. This work relates the development of a new process for the functionalization of textiles through the simultaneous formation and linkage of protein‐based microspheres onto textile fibers by sonochemical techniques. The microspheres developed by this process possess antimicrobial properties by themselves, but other may be incorporated by the encapsulation of various pharmaceutical formulations. This new type of microspheres and particularly their fixation onto textile materials encourage the development of textiles that can be used as delivery systems in a simple, fast, and non‐toxic process. Here it is reported the production of microspheres with a combination of bovine serum albumin (BSA), L ‐Cysteine (L ‐Cys), and n‐dodecane, using the ultrasound technology. The size distribution and morphology of the microspheres was determined as a function of several parameters such as irradiation time and BSA and L ‐Cys concentrations. The produced microspheres were analyzed using a laser light scattering size analyzer, an optical microscope and a scanning electron microscope. The new coating of BSA + L ‐Cys microspheres revealed a high stability and excellent antibacterial properties being a promising alternative to design textile‐based bioactive delivery systems with potential application in the development of textile‐based wound‐dressings. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
In this article, we report an efficient method for the synthesis of thymine‐functionalized polystyrene microspheres. First, poly(styrene‐co‐4‐chloromethylstyrene) copolymers slightly crosslinked with divinylbenzene were synthesized in batch free‐radical emulsion copolymerization. Microspheres with a particle size of ~40–70 nm were obtained with greater than 99% conversion. The chloromethylstyrene (CMS) groups were then converted into thymylmethylstyrene (TMS) in a two‐phase system with greater than 80% efficiency, and up to a 45 mol % thymine loading was achieved. The functionalized microspheres were characterized by elemental analysis, Fourier transform infrared, and X‐ray photoelectron spectroscopy. The analyses revealed partial hydrolysis of the CMS functionalities, yielding hydroxymethyl functional groups in addition to the thymine functionalities. These copolymers have potential applications in biotechnology. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5545–5553, 2005  相似文献   

12.
The TEMPO‐mediated polymerization of styrene in the presence of camphorsulfonic acid (CSA) is carried out using controlled radical dispersion polymerization. In the absence of TEMPO and CSA, 92% of conversion was achieved within 3 h of polymerization. When TEMPO is solely used, broadening of particle size with narrow PDI was observed because of the prolonged polymerization time. However, when 1:1 molar ratio of CSA/TEMPO was added, the fairly monodisperse PS microspheres having 5.83 μm average size and 3.42% CV (coefficient of variation) were successfully achieved because of the narrow molecular weight of intermediate oligomers and shortening of the polymerization time. This result obviously indicates that the addition of CSA in TEMPO‐mediated dispersion polymerization not only shortens the polymerization time but also greatly improves the uniformity of the microspheres. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 62–68, 2006  相似文献   

13.
由大分子单体法制得了聚醋酸乙烯酯接枝聚苯乙烯(PVAc-g-PSt)微球,使该微球在碱性条件下醇解形成了聚乙烯醇接枝聚苯乙烯(PVA-g-PSt)微球.经X射线光电子能谱对PVA-g-PSt微球表层组成的表征,发现微球具有以PVA为壳、PSt为核的核壳结构.进而利用汽巴蓝F3GA(CB)与PVA-g-PSt微球进行亲核反应,制得了CB功能化的PVA-g-PSt微球,由元素分析定量出了固定在微球表面的CB含量.用透射电子显微镜对微球的粒径与形态进行了表征,发现微球表面在CB功能化后变得相对粗糙,粒径大小基本保持不变,但形态更加规整.比较了3种不同微球对蛋白质的吸附,考察了吸附动力学和影响吸附的因素,发现起始牛血清蛋白(BSA)浓度、pH值、离子强度对微球吸附BSA有明显的影响,并利用Zeta电位探讨了微球与蛋白质间的相互作用机理.最后用硫氰酸钠(NaSCN)进行解吸,计算解吸率最高可达到95.7%,该CB功能化微球可以重复利用,吸附率仅减少5.3%.  相似文献   

14.
The minimization of nonspecific protein adsorption is a crucial step in the development of bioseparation processes, immunoassays, and affinity diagnostics. Among the numerous biomaterials, polyzwitterions are known to effectively suppress protein and cell adhesion. This article describes the formation of monodisperse polymer microspheres coated with polysulfobetaine with the aim to limit nonspecific adsorption of bovine serum albumin (BSA) as a model protein. In this process, 2‐μm poly(glycidyl methacrylate) (PGMA) microspheres were prepared by dispersion polymerization. To render the microspheres hydrophilic and biocompatible, [3‐(methacryloylamino)propyl]dimethyl(3‐sulfopropyl)ammonium hydroxide (MPDSAH) was grafted from the surface by reversible addition‐fragmentation chain transfer (RAFT) polymerization. Elemental analysis of the modified microspheres revealed up to 20 wt % of poly{[3‐(methacryloylamino)propyl]dimethyl(3‐sulfopropyl)ammonimum hydroxide} (PMPDSAH). The microspheres were characterized in terms of particle size, morphology, and zeta potential. The amount of BSA nonspecifically adsorbed on the PMPDSAH‐modified microspheres decreased to half of that captured on the unmodified PGMA microspheres. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2273–2284  相似文献   

15.
Electrostatic interaction between poly(methyl methacrylate) latex particles with different levels of chitosan modification and bovine serum albumin (BSA) was investigated. The critical flocculation concentration is in the range 5–15 nmol dm−3 for these latex products toward added BSA. A series of isothermal equilibrium adsorption experiments shows that the adsorption process is divided into two distinct intervals. Adsorption of BSA on latex particles in intervals I and II is primarily controlled by charge neutralization and hydrophobic interaction, respectively. Intervals I and II can be reasonably described by an empirical parabola equation and the Langmuir isotherm model, respectively. The maximum amount of BSA adsorbed per unit weight of polymer particles was observed at pH ≅ 5. A maximum elution yield of about 80% can be achieved using NaSCN as the elution electrolyte, and NaSCN is more effective in inducing desorption of BSA from the particle surface than NaCl. The chitosan content has very little effect on the interaction between latex particles and BSA. By contrast, the influence of the content of 2,2′-azobis(2-amidinopropane) dihydrochloride, a cationic initiator used in preparing the chitosan-modified latex products, on the BSA adsorption process is significant. Received: 26 March 1999 Accepted in revised form: 3 June 1999  相似文献   

16.
在离子液体均相体系中合成了一种新型两亲性窄分子量分布的低聚壳聚糖衍生物月桂基-琥珀酰化壳聚糖(LSCOS). 以LSCOS为载体材料, 以牛血清蛋白(BSA)为模板蛋白, 以戊二醛为交联剂, 用油包水(W/O)乳化交联法制备了包载BSA的BSA/LSCOS缓释载药微球. 通过扫描电子显微镜(SEM)、 透射电子显微镜(TEM)及紫外-可见光谱(UV-Vis)研究了BSA/LSCOS比率和戊二醛/LSCOS比率对微球的形貌结构、 包埋率、 载药率和体外药物释放特性的影响. 结果表明, 在离子液体中合成的LSCOS包覆了BSA, 形成的微球粒径约为1 μm, 微球表面随BSA用量的增加变得光滑, 随戊二醛用量的增加变得粗糙. BSA的累积释放率与BSA包载量成正比, 与交联剂添加量成反比, 因此, 可通过控制蛋白质药物的添加比率和交联剂用量来控制蛋白质药物体外释放率.  相似文献   

17.
Monodisperse functional polymer microspheres with different particle size and with clean surface were prepared by batch soap-free emulsion polymerization of styrene, methyl methacrylate and acrylic acid in the presence of salts, and the influences of type and amount of electrolytes on polymerization process and particle morphology were investigated. Results showed that there was a critical concentration for different electrolyte to make polymerization process and the resultant emulsion stable, and the particle size increased with the increase of electrolyte concentration. The effect of metal ions was Ca^2+〉〉K^+〉Na^+〉Li^+, and the effect of haloids was Br〉Cl〉F. Keywords: Electrolyte, soap-free emulsion polymerization, polystyrene, latex particle morphology.  相似文献   

18.
In this research, submicron and carboxyl‐functionalized magnetic latex particles were elaborated by using seeded emulsion polymerization technique in presence of oil‐in‐water (o/w) magnetic emulsion as seed. The polymerization conditions were optimized in order to get well‐defined latex particles with magnetic core and polymer shell bearing carboxylic (–COOH) functionality. Starting from (o/w) magnetic emulsion as seed, synthesis process was performed by copolymerization of styrene (St) monomer with the cross‐linker divinylbenzene (DVB) in presence of 4,4′‐azobis(4‐cyanopentanoic acid) (ACPA) as a carboxyl‐bearing initiator. The prepared magnetic latex particles were first characterized in terms of particle size, chemical composition, morphology, magnetic properties, magnetic content, and colloidal stability using various techniques, e.g. particle size analyzer using dynamic light scattering (DLS) technique, Fourier transform infrared, transmission electron microscopy, vibrating sample magnetometer, thermogravimetric analysis, and zeta potential measurements as a function of pH of the dispersion media, respectively. The prepared magnetic latex particles were then used as second seed for further functionalization with methacrylic acid (MAA) in order to enhance carboxylic groups on the magnetic particle's surface. The results showed that final magnetic latex particles possessed spherical morphology with core‐shell structure and enriched carboxylic acid functionality. More importantly, they exhibited superparamagnetism with high magnetic content (58.42 wt%) and high colloidal stability, which considered as the main requirements for their application in the biomedical diagnostic domains. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
This study focused on the fabrication of calcium phosphate (Ca-P)/poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanocomposite scaffolds loaded with biomolecules using the selective laser sintering (SLS) technique and their evaluation. Ca-P/PHBV nanocomposite microspheres loaded with bovine serum albumin (BSA) as the model protein were fabricated using the double emulsion solvent evaporation method. The encapsulation efficiency of BSA in PHBV polymer microspheres and Ca-P/PHBV nanocomposite microspheres were 18.06 ± 0.86% and 24.51 ± 0.60%, respectively. The BSA loaded Ca-P/PHBV nanocomposite microspheres were successfully produced into three-dimensional porous scaffolds with good dimensional accuracy using the SLS technique. The nanocomposite microspheres served as protective carriers and maintained the bioactivity of BSA during SLS. The effects of SLS parameters such as laser power and scan spacing on the encapsulation efficiency of BSA in the scaffolds and in vitro BSA release were studied. An initial burst release was observed, which was followed by a slow release of BSA. After 28-day release, The PHBV matrix was slightly degraded after 28-day in vitro release study. It was shown that nanocomposite scaffolds with controlled architecture obtained via SLS could be incorporated with biomolecules, enhancing them with more functions for bone tissue engineering application or making them suitable for localized delivery of therapeutics.  相似文献   

20.
以醇水混合液为分散介质,偶氮二异丁腈为引发剂,聚乙烯吡咯烷酮为稳定剂,二乙烯基苯为交联剂,采用分散聚合法一步制备了粒径约为1μm的单分散交联聚苯乙烯微球;采用扫描电镜和激光粒度仪等分析微球表面形貌及粒径分布,研究了滴加交联剂开始时间、交联剂浓度、引发剂浓度等对微球形貌和分散性能的影响.结果表明,在实验进行4h时加入交联剂,且交联剂滴加持续时间为2h的条件下,可制得平均粒径为1μm左右的交联聚苯乙烯微球,其具有较好的单分散性和球形度,且表面光滑.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号