首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p-Methoxystyrene (MOS), butyl vinyl ether (BVE), and N-vinylcarbazole (VCZ) were polymerized in high yield by azoinitiators such as 2, 2'-azodiisobutyronitrile (AIBN) in the presence of electron acceptors such as Ph2I+PF6. An electron paramagnetic resonance (ESR) study of the model radicals of the propagating radical showed the transformation of the radical to the corresponding cation in the presence of the electron acceptors. In the case of BVE, the polymer formation was caused by cationic species produced by the transformation of the initiating radical. The polymerizations of MOS and VCZ were ascribed to the transformation of the growing radical to the corresponding cation during the propagation step which was classified as the radical/cation transformation polymerization. Block copolymers of MOS/cyclohexene oxide (1, 2-epoxycyclohexane) (CHO) and VCZ/CHO were effectively prepared by the radical/cation transformation polymerization of the appropriate monomers in the presence of AIBN, electron acceptor and CHO. The formation of block copolymers was characterized by turbidimetry, thin-layer chromatography, and solubility tests.  相似文献   

2.
Abstract

ESR study on the primary radicals obtained by decomposition of azo-compounds showed that primary radicals with electron donating substituents were transformed to the corresponding cations in the presence of electron acceptors such as ph2I+PF? 6. Accordingly, propagating radicals are transformed to the corresponding cations in the polymerization of p-methoxy-styrene (MOS), n-butyl vinyl ether (BVE), and N-vinylcarbazole (VCZ) with azoinitiators such as AIBN in the presence of electron acceptors such as Ph2I+PF? 6. In the case of BVE, the polymer formation was caused by cationic species produced by the transformation of the initiating radical. The polymerizations of MOS and VCZ were ascribed to the transformation of the growing radical to the corresponding cation during the propagation step which was classified as the radical/cation transformation polymerization. Block copolymers of MOS/cyclohexene oxide (CHO) and VCZ/CHO were effectively prepared by the radical/cation transformation polymerization of the appropriate monomers in the presence of AIBN, electron acceptor and CHO. The formation of block copolymers was characterized by turbidimetry, thin-layer chromatography, and solubility tests.  相似文献   

3.
Polymerizations of methyl acrylate (MA) and (DL)-α-methyl-benzyl methacrylate (MBMA) with binary initiator system of cobaltocene [Co(C5H5)2] and bis(ethyl acetoacetato)copper(II) [Cu(eacac)2] were studied in acetonitrile at 25°C. The molecular weight of the polymers obtained by MA was found to increase with time in the early stage of polymerization. Although MBMA was also polymerized by this system, asymmetric selective polymerization was not induced in the presence of (-)-sparteine. The synthesis of the block copolymer of MA and MBMA was attempted by using this initiator system. The block copolymer was obtained in 90% yield in the polymerization of MBMA with a polymer radical which prepared from MA with this system for 1 day. The yield of the block copolymer depended on the prepolymeriza-tion time of MA by this system. The resulting block copolymer was characterized by IR, 1H-NMR, and gel-permeation chromatography.  相似文献   

4.
The electron spin resonance (ESR) spectra of polymer radicals found to be trapped in polytetrafluoroethylene (PTFE) polymerized with radical initiators were comparatively examined under various conditions and assigned. They are identified as the primary (propagating) radicals RCF2CF2·, which are transformed to primary peroxy radicals RCF2CF2OO· in the atmosphere. Studies of the rates of polymerization and postpolymerization and ESR measurements indicate that the radical content steadily increases during polymerization. The results are discussed in connection with the mechanism of polymerization of tetrafluoroethylene (TFE) and the unusual thermal stability of these radicals in PTFE prepared with initiator.  相似文献   

5.
Vinyl monomers having electron acceptor groups such as nitroethylene, acrylonitrile, and acrolein were polymerized by KO2–charge transfer agent initiator systems in dimethylsulfoxide (DMSO) at 25°C. The new initiator systems were found to be stable for almost 1 month under nitrogen atmosphere. The initial rate of polymerization was so fast that both conversion and molecular weight of the polymers obtained were high. Especially their molecular weight distribution was observed to be very narrow by means of gel permeation chromatography (GPC). The anion radicals generated by one electron transfer from potassium superoxide (KO2) to charge transfer agents such as naphthalene, benzoquinone, azobenzene, etc., were suitable as initiator for the anionic polymerization of electron acceptor monomers. Study on block copolymerization of nitroethylene with acrylonitrile or acrolein was also attempted.  相似文献   

6.
The poly(methyl methacrylate)‐b‐poly(2‐[[[[2‐(perfluorohexyl)]‐sulfonyl]‐amino]ehthyl] methacrylate) (PMMA‐b‐PC6SMA) copolymers were successfully synthesized for the first time using activator regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) method. Under optimized reaction conditions, the degree of polymerization (DP) of resulting copolymers increased approximately linearly with monomer conversion. Structures of a well‐defined block copolymer were determined by GPC, FT–IR, and 1H‐NMR spectra. Results from AFM and contact angle measurements of polymer films revealed the presence of block segments derived from PC6SMA, as indicated by the obvious increase in hydrophobicity and oleophobicity. The relationship between surface composition and surface wetting ability was confirmed by XPS and AFM spectra. Compared with the random copolymer PMMA‐co‐PC6SMA, C6SMA dosages in the PMMA‐b‐PC6SMA copolymers were greatly decreased, which retained its hydrophobic and oleophobic properties. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2040–2049  相似文献   

7.
In this contribution, we reported the synthesis of a hyperbranched block copolymer composed of poly(ε‐caprolactone) (PCL) and polystyrene (PS) subchains. Toward this end, we first synthesized an α‐alkynyl‐ and ω,ω′‐diazido‐terminated PCL‐b‐(PS)2 macromonomer via the combination of ring‐opening polymerization and atom transfer radical polymerization. By the use of this AB2 macromonomer, the hyperbranched block copolymer (h‐[PCL‐b‐(PS)2]) was synthesized via a copper‐catalyzed Huisgen 1,3‐dipolar cycloaddition (i.e., click reaction) polymerization. The hyperbranched block copolymer was characterized by means of 1H nuclear magnetic resonance spectroscopy and gel permeation chromatography. Both differential scanning calorimetry and atomic force microscopy showed that the hyperbranched block copolymer was microphase‐separated in bulk. While this hyperbranched block copolymer was incorporated into epoxy, the nanostructured thermosets were successfully obtained; the formation of the nanophases in epoxy followed reaction‐induced microphase separation mechanism as evidenced by atomic force microscopy, small angle X‐ray scattering, and dynamic mechanical thermal analysis. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 368–380  相似文献   

8.
用自由基 /正离子转化聚合法 ,由对甲氧基苯乙烯、环己烯氧化物、1,2 ,5 ,6 二环氧基环辛烷体系一步法合成了它们的嵌段共聚物 .其中 ,聚对甲氧基苯乙烯构成自由基聚合链段 ,而环己烯氧化物与 1,2 ,5 ,6 二环氧基环辛烷的共聚物构成正离子聚合链段 .实验结果初步表明 ,1,2 ,5 ,6 二环氧基环辛烷的加入可有效地消除由正离子聚合时链转移产生的均聚物  相似文献   

9.
For the first time, electron paramagnetic resonance spectroscopy was used to compare numbers and distributions of radicals produced in frontal free‐radical polymerization of multifunctional acrylates and methacrylates to those produced by bulk free‐radical polymerization. A comparison of radical concentrations was performed for individual polymers and selected copolymers of trimethylolpropane trimethacrylate (TMPTMA), 1,6‐hexanediol diacrylate, trimethylolpropane triacrylate, and pentaerythritol tetraacrylate (PETA). Frontally polymerized samples showed a large spike in intensity at the point of initiation. Within a few centimeters, the radical signal diminished to a steady state. The radical concentration remained almost constant over 3 months under helium in flame‐sealed tubes. The types of radicals were similar to those in bulk polymerization. For both TMPTMA and PETA, frontally polymerized samples had significantly higher numbers of radicals than did the bulk‐prepared samples, achieving concentrations as high as 8.7 × 10?3 mol/kg in the frontally prepared samples of TMPTMA. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
In this research, poly(methyl methacrylate)‐b‐poly(butyl acrylate) (PMMA‐b‐PBA) block copolymers were prepared by 1,1‐diphenylethene (DPE) controlled radical polymerization in homogeneous and miniemulsion systems. First, monomer methyl methacrylate (MMA), initiator 2,2′‐azobisisobutyronitrile (AIBN) and a control agent DPE were bulk polymerized to form the DPE‐containing PMMA macroinitiator. Then the DPE‐containing PMMA was heated in the presence of a second monomer BA, the block copolymer was synthesized successfully. The effects of solvent and polymerization methods (homogeneous polymerization or miniemulsion polymerization) on the reaction rate, controlled living character, molecular weight (Mn) and molecular weight distribution (PDI) of polymers throughout the polymerization were studied and discussed. The results showed that, increasing the amounts of solvent reduced the reaction rate and viscosity of the polymerization system. It allowed more activation–deactivation cycles to occur at a given conversion thus better controlled living character and narrower molecular weight distribution of polymers were demonstrated throughout the polymerization. Furthermore, the polymerization carried out in miniemulsion system exhibited higher reaction rate and better controlled living character than those in homogeneous system. It was attributed to the compartmentalization of growing radicals and the enhanced deactivation reaction of DPE controlled radical polymerization in miniemulsified droplets. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4435–4445, 2009  相似文献   

11.
A block copolymer of cyclohexene oxide (CHO) and styrene (St) was prepared by using bifunctional visible light photoinitiator dibenzoyldiethylgermane (DBDEG) via a two‐step procedure. The bifunctionality of the photoinitiator pertains to the sequential photodecomposition of DBDEG through acyl germane bonds. In the first step, photoinitiated free radical promoted cationic polymerization of CHO using DBDEG in the presence of diphenyliodonium hexafluorophosphate (Ph2I+PF) was carried out to yield polymers with photoactive monobenzoyl germane end groups. These poly(cyclohexene oxide) (PCHO) prepolymers were used to induce photoinitiated free radical polymerization of styrene (St) resulting in the formation of poly(cyclohexene oxide‐block‐styrene) (P(CHO‐b‐St)). Successful blocking has been confirmed by a strong change in the molecular weight of the prepolymer and the block copolymer as well as NMR, IR, and DSC spectral measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4793–4799, 2009  相似文献   

12.

A functionalized compound, 4‐(2‐bromoisobutyryl)‐2,2,6,6‐tetra‐methylpiperidine‐1‐oxyl (Br‐TEMPO), was synthesized and used to synthesize block copolymers through tandem nitroxide‐mediated radical polymerization (NMRP) and atom transfer radical polymerization (ATRP). First, Br‐TEMPO was used to mediate the polymerization of styrene. The kinetics of polymerization proved a typical “living” nature of the reaction and the effectiveness in the mediation of polymerization of Br‐TEMPO. Then the PS‐Br macroinitiator was used to initiate atom transfer radical polymerization (ATRP). A series of acrylates were initiated by PS‐Br macroinitiators in typical ATRP processes at various conditions. The controlled polymerization of ATRP was also confirmed by molecular weight and kinetic analysis. Several cleavable block copolymers of PS‐b‐P(t‐BA), PS‐b‐P(n‐BA), and PS‐b‐PMA, with different molecular weights, were synthesized via this strategy. Relatively low polydispersities (<1.5) were observed and the molecular weights were in agreement with the theoretical ones. Hydrolysis of PS‐b‐P(t‐BA) was carried out, giving amphiphilic block copolymer PS‐b‐PAA without the cleavage of C‐ON bond or ester bond. All the block copolymers have two Tgs as demonstrated by DSC. A typical cleavable block copolymer of PS‐b‐PMA was cleaved by adding phenylhydrazine at 120°C to produce homopolymers in situ.  相似文献   

13.
Curcumin (Cur), a natural colorant found in the roots of the Turmeric plant, has been reported for the first time as photoinitiator for the copolymerization of styrene (Sty) and methylmethacrylate (MMA). The kinetic data, inhibiting effect of benzoquinone and ESR studies indicate that the polymerization proceeds via a free radical mechanism. The system follows ideal kinetics (Rp α[Cur]0.5[Sty]0.97[MMA]1). The reactivity ratios calculated by using the Finemann–Ross and Kelen‐Tudos models were r1(MMA)=0.46 and r2(Sty)=0.52. IR and NMR analysis confirmed the structure of the copolymer. NMR spectrum showing methoxy protons as three distinct groups of resonance between 2.2–3.75 δ and phenyl protons of styrene at 6.8–7.1 δ confirmed the random nature of the copolymer. The mechanism for formation of radicals and random copolymer of styrene and MMA [Sty‐co‐MMA] is also discussed.  相似文献   

14.
Polystyrene (PSt) radicals and poly(methyl acrylate) (PMA) radicals, derived from their monobrominated precursors prepared by atom transfer radical polymerization (ATRP), were formed in the presence of the radical trap 2‐methyl‐2‐nitrosopropane (MNP), selectively forming PSt‐PMA diblock copolymers with an alkoxyamine at the junction between the block segments. This radical trap‐assisted, atom transfer radical coupling (RTA‐ATRC) was performed in a single pot at low temperature (35 °C), while analogous traditional ATRC reactions at this temperature, which lacked the radical trap, resulted in no observed coupling and the PStBr and PMABr precursors were simply recovered. Selective formation of the diblock under RTA‐ATRC conditions is consistent with the PStBr and PMABr having substantially different KATRP values, with PSt radicals initially being formed and trapped by the MNP and the PMA radicals being trapped by the in situ‐formed nitroxide end‐capped PSt. The midchain alkoxyamine functionality was confirmed by thermolysis of the diblock copolymer, resulting in recovery of the PSt segment and degradation of the PMA block at the relatively high temperatures (125 °C) required for thermal cleavage. A PSt‐PMA diblock formed by chain extenstion ATRP using PStBr as the macroinitiator (thus lacking the alkoxyamine between the PSt‐PMA segements) was inert to thermolysis. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3619–3626  相似文献   

15.
甲基丙烯酸己磺酸钠的等离子体射发聚合与嵌段共聚合   总被引:2,自引:0,他引:2  
Very thick slurry of sodium sulfohexyl methacrylate (SSHMA) with little amount of water was plasma-initiated and polymerized. The mechanism and kinetics of plasma-initiated polymerization of SSHMA were preliminarily studied. The existence of macromolecular "living" chains were ascertained by experiments. Thus, SSHMA-acrylic acid block copolymers were obtained by adding acrylic acid to livingSSHMA segments. The ESR results suggest that propagating radicals CH2C(CH3)CO-O(CH2)6SO3Na might be present in the SSHMA system initiated by plasma. It was found that no"living"chains were present in the SSHMA system initiated by either UV light or radical initiators under the same conditions.  相似文献   

16.
Glucose responsive block copolymer featuring boronic acid as a glucose responsive moiety and glycine are reported. The first block is polymerized through reversible addition–fragmentation chain transfer (RAFT) polymerization and the resulting poly(N‐acryloylmorpholine)113 (PAcM) is employed as a macro‐chain transfer agent for chain extension with pentafluorophenyl acrylate (PFPA) yielding a well‐defined PAcM113block‐poly(pentafluorophenyl acrylate)84 (PPFPA). The PPFPA block is then reacted with functional (3‐aminomethyl) phenyl boronic acid and glycine via post‐polymerization modification and the structure of the block copolymer is confirmed by proton nuclear magnetic resonance (NMR), 19F NMR, Fourier transform infrared, and gel permeation chromatography. By copolymerizing glycine into the polymer backbone, the relative pKa of the block copolymer is significantly lowered. The block copolymer can self‐assemble into core–shell micelles in aqueous solution and disassemble in response to glucose at the physiological pH. Furthermore, the encapsulation and release of Nile red (NR) as a hydrophobic model drug is studied under the physiological pH. The influence of the glucose concentration on the NR release from the polymeric micelles is demonstrated. These results suggested that the glucose‐responsive poly[(AcM)113b‐(3‐(aminomethyl)phenylboronic acid hydrochloride(‐co‐Gly)84] block copolymer has potential applications as a glucose‐responsive polymer for insulin delivery. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 422–431  相似文献   

17.
An azido‐containing functional monomer, 11‐azido‐undecanoyl methacrylate, was successfully polymerized via ambient temperature single electron transfer initiation and propagation through the reversible addition–fragmentation chain transfer (SET‐RAFT) method. The polymerization behavior possessed the characteristics of “living”/controlled radical polymerization. The kinetic plot was first order, and the molecular weight of the polymer increased linearly with the monomer conversion while keeping the relatively narrow molecular weight distribution (Mw/Mn ≤ 1.22). The complete retention of azido group of the resulting polymer was confirmed by 1H NMR and FTIR analysis. Retention of chain functionality was confirmed by chain extension with methyl methacrylate to yield a diblock copolymer. Furthermore, the side‐chain functionalized polymer could be prepared by one‐pot/one‐step technique, which is combination of SET‐RAFT and “click chemistry” methods. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
Novel fullerene‐grafted poly(3‐hexylthiophene) (P3HT)‐based rod‐coil block copolymers have been synthesized. The regioregular P3HT rod block has been synthesized by a modified Grignard metathesis reaction (GRIM). An original in situ end‐capping reaction has been developed in order to convert the P3HT block into an efficient macro‐initiator for the nitroxide‐mediated radical polymerization (NMRP) of the coil block. Controlled radical polymerization of the second poly(butylacrylate‐stat‐chloromethylstyrene) [P(BA‐stat‐CMS)] block has been done through various conditions leading to different coil block lengths. The final electron donor‐acceptor block copolymer has been obtained after C60 grafting in soft conditions. Copolymers have been characterized by 1H NMR and size exclusion chromatography. Optical characterizations, before and after C60 grafting, are reported.

  相似文献   


19.
An unsymmetrical triphenylethane, ethane-1,1,2-triyltribenzene (ETB), was successfully prepared from phenyl lithium, trans-1,2-diphenylethylene, and methanol. Characterization of the compound was performed by 1H and 13C nuclear magnetic resonance spectroscopy (NMR). The polymerization of methyl methacrylate (MMA) was performed in the presence of ETB at 85 °C or higher. The free radicals obtained were characterized by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS). Gel permeation chromatography (GPC) traces of the average molecular weight of poly(MMA) (PMMA) showed a series of translations with increasing time. The average molecular weight of PMMA indicated narrow polydispersity, and a linear relationship was found between ln([M]0/[M]) and polymerization time. These results indicated the “living” nature of the polymerization of MMA in the presence of ETB. The structure of ETB was also introduced to the end of polystyrene (PS), polyisoprene (PI), and polyisoprene-b-polystyrene (PIS) chains which were obtained by living anionic polymerization. Hence, they initiated radical polymerization of MMA as ETB-end-macroinitiators to obtain block copolymers. Thus, living anionic polymerization and this radical polymerization method were combined together to prepare block copolymers without the intermediate transformation step.  相似文献   

20.
Degradation processes of N-methylmorpholine-N-oxide monohydrate (NMMO), cellulose and cellulose/NMMO solutions were studied by high performance liquid chromatography (HPLC) and electron spin resonance (ESR) spectroscopy. Kinetics of radical accumulation processes under UV (λ = 248 nm) excimer laser flash photolysis was investigated by ESR at 77 K. Beside radical products of cellulose generated and stabilized at low temperature, radicals in NMMO and cellulose/NMMO solutions were studied for the first time in those systems and attributed to nitroxide type radicals ∼CH2–NO–CH2∼ and/or ∼CH2–NO–CH3∼ at the first and methyl CH3 and formyl CHO radicals at the second step of the photo-induced reaction. Kinetic study of radicals revealed that formation and recombination rates of radical reaction depend on cellulose concentration in cellulose/NMMO solutions and additional ingredients, e.g., Fe(II) and propyl gallate. HPLC measurements showed that the concentrations of ring degradation products, e.g., aminoethanol and acetaldehyde, are determined by the composition of the cellulose/NMMO solution. Results based on HPLC are mainly maintained by ESR that supports the assumption concerning a radical initiated ring-opening of NMMO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号