首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermoreversible gelation behavior of blend of poly(vinylidene fluoride) and poly(vinylidene fluoride-trifluoroethylene) in γ-butyrolactone solution was studied. Sol-gel transition temperature increased with the increase of polymer concentration, but was independent of the blend ratio of two polymers. An equation for gelation rate was derived, assuming that the gelation is a first-order reaction and that the gelation rate obeys an Arrhenius type. According to the equation, the growth index of gelation and supercooling temperature had a dominant effect on gelation rate. The growth index of gelation, which was calculated from the dependence of activation energy on the supercooling temperature in the isothermal gelation, varied with the blend ratio of two polymers. Growth index of gelation larger than 2 was obtained for the blend gels studied in this experiment. It may suggest that the multidimensional growth of gels occurs in such polymer blend solutions. X-ray diffraction and differential scanning calorimetry measurements showed existence of separate crystals due to each component of polymer in the blend gels. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
With the objective of developing new biodegradable materials, the miscibility and the crystallinity of blends of poly(3-hydroxybutyrate), P(3HB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-co-3HV), have been studied. P(3HB) (300 kg mol−1)/P(3HB-co-3HV)–10% 3HV (340 kg mol−1) blends were prepared by casting in a wide range of proportions, and characterized by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). The experimental values for the glass transition temperatures (Tg) are in good agreement with the values provided by the Fox equation, showing that the blends are miscible. It was observed that the Tg and the melting temperature (Tm) decreases with the increase in the P(3HB-co-3HV)–10% 3HV content, while the crystallization temperature (Tc) increases. FT-IR analyses confirmed the decrease on the crystallinity of P(3HB)/P(3HB-co-3HV)–10% 3HV blends with higher copolymer contents. Bands related to the crystallinity were changed, due to the copolymer content that produced miscible and less crystalline blends.  相似文献   

3.
A combined optical and electron microscopical study has been carried out of the crystallization habits of poly(vinylidene fluoride) (PVF2) when it is crystallized from blends with noncrystallizable poly(ethyl acrylate) (PEA). The PVF2/PEA weight ratios were 0.5/99.5,5/95, and 15/85. Isothermal crystallization upon cooling the blends from the single-phase liquid region was carried out in the range 135–155°C, in which the polymer crystallizes in the α-orthorhombic unit cell form. The 0.5/99.5 blend yielded multilayered and planar lamellar crystals. The lamellae formed at low undercoolings were lozenge shaped and bounded laterally by {110} faces. This habit is prototypical of the dendritic lateral habits exhibited by the crystals grown from the same blend at high undercoolings as well as by the constituent lamellae in the incipient spherulitic aggregates and banded spherulites that formed from the 5/95 and the 15/85 blends, respectively. In contrast with the planar crystals grown from the 0.5/99.5 blend, the formation of the aggregates grown from the 5/95 blend is governed by a conformationally complex motif of dendritic lamellar growth and proliferation. The development of these aggregates is characterized by the twisting of the orientation of lamellae about their preferential b-axis direction of growth, coupled with a fan-like splaying or spreading of lamellae about that axis. The radial growth in the banded spherulites formed from the 15/85 blend is governed by a radially periodic repetition of a similar lamellar twisting/fan-like spreading growth motif whose recurrence corresponds to the extinction band spacing. This motif differs in its fan-like splaying component from banding due to just a helicoidal twisting of lamellae about the radial direction. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
The blend system containing a poly(vinylidene fluoride/trifluoroethylene) [P(VDF/TrFE)] copolymer (68/32 mol %) and poly(vinyl acetate) (PVAc) was miscible from the results of differential scanning calorimetry (DSC) studies that exhibit the presence of a single, composition‐dependent glass transition temperature (Tg) and a strong melting point depression for the semicrystalline P(VDF/TrFE) component. However, differences between the DSC and dielectric measurements, which showed a separate P(VDF/TrFE) Tg peak, suggests that the P(VDF/TrFE)/PVAc blends are actually partially miscible. Because of the lower dielectric constant of PVAc and the reduced sample crystallinity caused by the addition of PVAc, both the dielectric constant and the remanent polarization of the copolymer blends decrease with increasing PVAc content. The presence of a small amount of PVAc stabilized the anomalous ferroelectric behavior of ice–water‐quenched P(VDF/TrFE), and the blend portrayed normal polarization reversal behavior after adding only 1 wt % PVAc. The piezoelectric response suggests small changes with an increasing number of poling cycles. It is believed that PVAc affects the DE hysteresis behavior at the interface between crystalline and amorphous phases, although much work remains to be done to confirm this hypothesis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 927–935, 2003  相似文献   

5.
Dielectric and thermal characterizations were performed for poly (vinylidene fluoride) (PVDF)/poly (ethyl methacrylate) (PEMA) blends of different composition. The characteristics of PVDF β relaxation were shown to be little affected in the semicrystalline blends with PEMA. The relaxation strength, however, depends strongly on the PEMA content and a linear relation was found between the intensity of the β relaxation and the weight fraction of the PVDF crystal-amorphous interphase. Phase structures of the PVDF/PEMA blends are also proposed. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
Binary blends of atactic poly(epichlorohydrin) (aPECH) and poly(3-hydroxybutyrate) (PHB) were investigated as a function of blend composition and crystallization conditions by dielectric relaxation spectroscopy. The quenched samples were found to be miscible in the whole composition range by detecting only one glass transition relaxation, for each composition, which could be closely described by the Gorden-Taylor equation. The cold-crystallized blends displayed two glass transition relaxations at all blend ratios indicating the coexisting of two amorphous populations: a pure aPECH phase dispersed mainly in the interfibrillar zones and a mixed amorphous phase held between crystal lamellae. The interlamellar trapping of aPECH was small and decreases with increasing the overall PHB content in the blend. At high crystallization temperatures the aPECH molecules was found to reside mainly in the interfibrillar regions due to its high mobility relative to the crystal growth rate of PHB. Our results suggest that because the intersegmental interaction in aPECH/PHB blends is weak, the mobility of the amorphous component at a given crystallization temperature decides diluent segregation.  相似文献   

7.
The miscibility of blends of semicrystalline poly(vinylidene fluoride)(PVF2) and poly(vinyl methyl ketone) (PVMK) along with surface characterization were investigated using the inverse gas chromatography method (IGC), over a range of blend compositions and temperatures. Three chemically different families, alkanes, acetates, and alcohols, were utilized for this study. The values of the PVF2‐PVMK interaction parameters were found to be slightly positive for most of the solutes used, although some degree of miscibility was found at all compositions. Miscibility was greatest at a 50:50 w/w composition of the blend. The interaction parameters obtained from IGC are in excellent agreement with those obtained using calorimetry on the same blends. The calculated molar heat of sorption of alkanes, acetates, and alcohols into the blend layer reveal the impact of the combination of dispersive and hydrogen bonding forces on the interaction of solutes with the blend's backbone. The dispersive component of the surface energy was found to range from 18.70–64.30 mJ/m2 in the temperature range of 82–163 °C. A comparison of the blend's surface energy with that of mercury and other polymers is given. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1155–1166, 2000  相似文献   

8.
The miscibility of poly (?-caprolactone) (PCL) with poly (styrene-co-acrylic acid) (SAA) and of poly (styrene-co-acrylonitrile) (SAN) with SAA was examined as a function of the comonomer composition in the copolymers. For PCL/SAA blends it was found that PCL is miscible with SAA within a specific range of copolymer compositions. Segmental interaction energy densities were evaluated by analysis of the equilibrium melting point depression and application of a binary interaction model. The results suggest that the intramolecular repulsion in SAA copolymer plays an important role in inducing the miscibility. Additionally, the critical AA content in SAA for the blend to be homogeneous was predicted by correlating the segmental interaction energy densities with the binary interaction model. For SAN/SAA blends, it was also found that SAA is miscible with SAN within a specific range of copolymer compositions. From the binary interaction model, segmental interaction energy denisties between different monomer units were estimated from the miscibility map and were found to be positive for all pairs, indicating that the miscibility of the blends is due to the strong repulsion in the SAA copolymers.  相似文献   

9.
The kinetics of the early stages of thermal degradation below 1% dehydrochlorination of emulsion-polymerized poly(vinylidene chloride) (PVDC) is studied by the variation of the pH value of potassium hydroxide aqueous solution between 160 and 190°C in the presence of air and other gas streams. The results turned out that the thermal degradation of PVDC can be divided into three stages, which correspond to an induction period, a period with conversion below 0.1% dehydrochlorination, and that with conversion ranging from 0.1 to 1%. For the induction stage, the induction time depends upon the types of environment gas and degradation temperature. Both of the second and the third stages are zero-order reactions, which also result in the discoloration and crosslinking of the neat polymer. The average apparent activational energy of the zero-order degradation reaction was about 21 kcal/mol, which is independent of the types of environment gas. The whole degrading kinetics data can be well explained by the mechanism of a free-radical-induced dehydrochlorination. The viscosity of the degraded sample increases rapidly with degradation and becomes insoluble in regular solvents. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2035–2044, 1999  相似文献   

10.
Poly(3-hydroxybutyrate), PHB has been structurally modified through reaction with maleic anhydride, MA. Transesterification reaction was carried out fixing the PHB and MA and besides time and temperature the concentration of the triethylamine (used as catalyst) was changed. Glass transition, melting and crystallization temperature obtained from DSC curves and thermal degradation temperatures obtained from TG traces were used to evaluate the influence of the reaction conditions on the modification of PHB according to factorial design. On the base of the results the optimum conditions are to perform the PHB modification reaction with MA reaction at 110°C for 1 h with 5% v/v triethylamine.  相似文献   

11.
Melting behavior of poly(tetrahydrofuran)-s (PTHF) and their blend with different molecular masses has been studied by TM-DSC. PTHF and their blend show two endothermic peaks on their curve. The melting peak temperatures T m1 and T m2, entropy of fusion ΔS f1 and ΔS f2, and mean relaxation time for melting τf1 and τf2 have been estimated, and their dependence on the molecular mass has been examined. Plots of Tm1 to the reciprocal of their molecular mass fit a simple equation (T m=a-b/M n). Plots of T m2 to their molecular mass also fit the equation with different factors. There seems to be a boundary around molecular mass 1200 in the molecular mass dependence of ΔS fand τf. Effect of blending appeared on the τf and the non-reversing heat flow. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Thermal analysis based on TGA (thermal gravimetric analysis) and DSC (differential scanning calorimeter) shows no significant degradation for PVDC which has been annealed at 210°C for less than 2 min. And the following recrystallization behavior at lower temperature (120°C) is also independent of the thermal treatment and is not affected by the difference of molecular weight. The degradation which includes dehydrochlorination at lower temperature and intramolecular cyclization or intermolecular crosslinking of the polyenes at higher temperature starts when the melting time at 210°C is more than 2 min, which also causes weight loss and heat exchange in the TGA and DSC thermograms. The recrystallization behavior of the degraded PVDC (staying at 210°C for more than 2 min) shows a strong dependence on the molecular weight. The crystallinity is decreased with the melting time at 210°C due to the increase of the degree of crosslinking. However, the POM (polarized optical microscopy) pictures and IR spectra show a favorable nucleation effect is present due to the formation of trichlorobenzene from the cyclization of the polyenes as nuclei. The crystallinity of the PVDC recrystallized at 120°C after staying at 210°C for more than 2 min is actually dependent on the molecular weight, melting time at 210°C, and cyclized or crosslinking types of degradation. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3269–3276, 1999  相似文献   

13.
14.
Biodegradable and amphiphilic triblock copolymers poly(ethyl ethylene phosphate)-poly(3-hydroxy-butyrate)-poly(ethyl ethylene phosphate) (PEEP-b-PHB-b-PEEP) have been successfully synthesized through ring-opening polymerization. The structures are confirmed by gel permeation chromatography and NMR analyses. Crystallization investigated by X-ray diffraction reveals that the block copolymer with higher content of poly(ethyl ethylene phosphate) (PEEP) is more amorphous, showing decreased crystallizability. The obtained copolymers self-assemble into biodegradable nanoparticles with a core-shell micellar structure in aqueous solution, verified by the probe-based fluorescence measurements and transmission electronic microscopy (TEM) observation. The hydrophobic poly(3-hydroxybutyrate) (PHB) block serves as the core of the micelles and the micelles are stabilized by the hydrophilic PEEP block. The size and size distribution are related to the compositions of the copolymers. Paclitaxel (PTX) has been encapsulated into the micelles as a model drug and a sustained drug release from the micelles is observed. MTT assay also demonstrates that the block copolymers are biocompatible, rendering these copolymers attractive for drug delivery. Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20060358036)  相似文献   

15.
Nonisothermal crystallization and melting behavior of poly(3-hydroxybutyrate) (PHB) and maleated PHB were investigated by differential scanning calorimetry using various cooling rates. The results show that the crystallization behavior of maleated PHB from the melt greatly depends on cooling rates and its degree of grafting. With the increase in cooling rate, the crystallization process for PHB and maleated PHB begins at lower temperature. For maleated PHB, the introduction of maleic anhydride group hinders its crystallization, causing crystallization and nucleation rates to decrease, and crystallite size distribution becomes wider. The Avrami analysis, modified by Jeziorny, was used to describe the nonisothermal crystallization of PHB and maleated PHB. Double melting peaks for maleated PHB were observed, which was caused by recrystallization during the heating process.  相似文献   

16.
The effects of transesterification on the miscibility of poly(ethylene terephthalate)/poly(ethylene 2,6-naphthalate) were studied. Blends were obtained by solution precipitation at room temperature to avoid transesterification during blend preparation. The physical blends and transesterified products were analyzed by wide-angle x-ray scattering, differential scanning calorimetry, and nuclear magnetic resonance spectroscopy. It was found that the physical blends are immiscible and when the extent of transesterification reaches 50% of the completely randomized state, independent of blend composition, the blends are not crystallizable and show a single glass transition temperature between those of starting polymers. The interchange reactions were significantly influenced by annealing temperature and time but negligibly by blend composition. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
Upon crystalline solidification of one component in a homogeneously molten polymer blend, composition profiles develop outside (i.e., in the rest melt) and behind (i.e., within the spherulites) the crystal growth front. The present article is devoted to the detailed verification and the interpretation of these distributions and their temporal development inside growing spherulites. To this end, the energy dispersive X‐ray emission (EDX) of suitable elements has been recorded locally resolved in a scanning electron microscope and evaluated correspondingly. The investigations were performed at the melt homogeneous blend of poly(vinylidene fluoride) (PVDF) as crystallizing and poly(methyl methacrylate) (PMMA) as steadily amorphous component. If the spherulites are not volume filling, the mean PMMA content 〈?PMMA〉 inside the PVDF spherulites is for all blends about 0.2 below the starting composition. ?PMMA increases however slightly from the center of a spherulite to its border. That increase reflects the PMMA concentration in front of the spherulite surface, which increases likewise with time, and is clearly above the initial composition. There is at the spherulite surface, consequently, a remarkable jump in composition from the spherulite internal to its amorphous surroundings. It may amount up to 0.5. With volume filling spherulites, a slight variation of the composition from the center of a spherulite to its border is observed, too. This proves that also at these conditions composition profiles develop in the spherulite's surroundings. They remain however so weak that they do not inhibit crystallization even in its later stages. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 338–346, 2006  相似文献   

18.
Various PVDF/PMMA (poly(vinylidene fluoride)/poly(methyl methacrylate)) blends were selected for mechanical testing in compression. At low PVDF content (less than 50/50 w/w), the blends remain amorphous and PVDF and PMMA are fully miscible. In PVDF-richer blends, PVDF crystallizes in part, leading to a PMMA-enriched homogeneous amorphous phase. In this study, the degree of crystallinity was set at equilibrium by appropriate annealing of the samples before testing. Mechanical analysis was focused on the low deformation range, and especially on the yield region. Depending on the test temperature and blend composition, three types of response were identified, depending on whether plastic deformation is influenced: 1) by the PMMA secondary relaxation motions, 2) by the PVDF/PMMA glass transition motions, or 3) by the crystallite-constrained PVDF chains.  相似文献   

19.
The miscibility and thermal properties of polyethylene oxide(PEO)/oligoester resin (OER) blends and PEO/crosslinked polyester (PER) blends were studied by differential scanning calorimetry (DSC). The effect of quenching process on the crystallization behavior of PEO for these two systems were investigated and discussed in details. It has been found that a single, composition dependent glass transition temperature (Tg) was observed for all the blends, indicating that the two systems are miscible in the amorphous state at overall compositions. From the melting point depression of PEO, the interaction parameter χ12 for PEO/OER blends and that for PEO/PER blends were found to be −1.29 and −2.01, respectively. The negative values of χ12 confirmed that both PEO/OER blends and PEO/PER blends are miscible in the molten state. Quenching process has a greater hindrance on the crystallization of PEO/OER blends than on that of PEO/PER blends. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3161–3168, 1997  相似文献   

20.
The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybuty-rate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and optical microscopy. The blends showed two glass transition temperatures and a depression of melting temperature of PHB with compositions in phase diagram, which indicated that the blend was partially miscible. The morphology observation supported this result. It was found that the PHB and PES can crystallize simultaneously or upon stepwise depending on the crystallization temperatures and compositions. The spherulite growth rate of PHB increased with increasing of PES content. The influence of compositions on the spherulitic growth rate for the partially miscible polymer blends was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号