首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present (1) the linearly polarized (LP) ultraviolet (UV) photoreaction of block copolyesterethers comprising a hard segment of polyester and soft segment of poly(tetramethylene ether) (PTMG) and (2) the alignment behavior of liquid crystals (LCs) on the resultant photoreacted polymer films. Two kinds of copolyesterethers with different polyester segments of poly(hexamethylene p-phenylenediacrylate) (1a) or poly(hexamethylene p-phenylenediacrylate)-co-poly(hexamethylene 1,4-dibenzoate) (1b) were used in this study. The LP–UV irradiation resulted in a negative optical anisotropy for both polymer films, and a homogeneous photoalignment of LCs was achieved on the photoreacted polymer film. The LC alignment was perpendicular to the electric vector of the incident polarized light for 1a, whereas a reversion of the alignment from parallel to perpendicular was observed for 1b, depending on the irradiation doses. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4000–4006, 1999  相似文献   

2.
New degradable poly(ether‐anhydride) networks were synthesized by UV photopolymerization. Dicarboxylated poly(ethylene glycol) (PEG) or poly(tetramethylene glycol) (PTMG) was reacted with an excess of methacrylic anhydride to form dimethacrylated macromers containing anhydride linkages. The percent of conversion for the macromer formation was more than 80% at 60 °C after 24 h. 1H NMR and IR spectroscopies show the presence of anhydride linkages in the macromer. In vitro degradation studies were carried out at 37 °C in PBS with crosslinked polymer networks formed by UV irradiation. All PEG‐based polymers degraded within 2 days, while PTMG‐based polymers degraded by 50% of the initial weight after 14 days. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1277–1282, 2000  相似文献   

3.
The block copolyetheresters with a hard segment of poly (hexamethylene p,p′-bibenzoate) and a soft segment of poly (ethylene oxide) were prepared by melt polycondensation of dimethyl-p,p′-bibenzoate, 1,6-hexanediol, and polyethylene glycol (PEG) with molecular weights of 400, 1000, 2000, or 4000. These block copolyetheresters were characterized by intrinsic viscosity, GPC, FT-IR, 1H-NMR, and water absorption. The thermotropic liquid crystalline properties were investigated by DSC, polarized microscope, and x-ray diffraction. The block copolyetheresters exhibit smectic liquid crystallinity due to the polyester segment. The transitions are dependent on the molar content and the molecular weight of PEG used. The block copolyetheresters show high water absorption due to the hydrophilic nature of the poly (ethylene oxide) segment. The water absorption increases with increasing PEG content. As the molecular weight of PEG increases, the water absorption increases significantly. The results indicate that the water absorption of the poly (ethylene oxide) segment in the block copolymers is affected by the presence of polyester segments. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Hydroxy‐terminated poly(pentamethylene p,p′‐bibenzoate) oligomers with different molecular weights were prepared. The poly(pentamethylene p,p′‐bibenzoate) oligomers showed rather high crystallinity, and some of them exhibited a monotropic smectic phase. Block copolyesters with hard segments of poly(pentamethylene p,p′‐bibenzoate) and soft segments of poly(tetramethylene adipate) were prepared by coupling the poly(pentamethylene p,p′‐bibenzoate) oligomer and a poly(tetramethylene adipate)glycol with methylene‐4,4′‐diphenylene diisocyanate in solution. The block copolyesters were characterized by IR, 1H NMR, differential scanning calorimetry, a polarized microscope, and X‐ray diffraction. The thermal transitions of the block copolyesters were dependent on the composition and the molecular weight of the poly(pentamethylene p,p′‐bibenzoate) oligomer used. The hard segments in the block copolyesters showed no liquid crystallinity and exhibited rather low crystallinity or were even amorphous. The molecular weight of the poly(pentamethylene p,p′‐bibenzoate) oligomer used influences the glass‐transition temperature and crystalline properties of the soft segments in the block copolyesters significantly. The effect on the glass‐transition temperature of the soft segments is described as the difference in miscibility between the hard and soft segments. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2626–2636, 2002  相似文献   

5.
A bromine capped star‐shaped poly(methyl methacrylate) (S‐PMMA‐Br) was synthesized with CuBr/sparteine/PT‐Br as a catalyst and initiator to polymerize methyl methacrylate (MMA) according to atom transfer radical polymerization (ATRP). Then, with S‐PMMA‐Br as a macroinitiator, a series of new liquid crystal rod–coil star block copolymers with different molecular weights and low polydispersity were obtained by this method. The block architecture {coil‐conformation of the MMA segment and rigid‐rod conformation of 2,5‐bis[(4‐methoxyphenyl)oxycarbonyl] styrene segment} of the four‐armed rod–coil star block copolymers were characterized by 1H NMR. The liquid‐crystalline behavior of these copolymers was studied by differential scanning calorimetry and polarized optical microscopy. We found that the liquid‐crystalline behavior depends on the molecular weight of the rigid segment; only the four‐armed rod–coil star block copolymers with each arm's Mn,GPC of the rigid block beyond 0.91 × 104 g/mol could form liquid‐crystalline phases above the glass‐transition temperature of the rigid block. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 733–741, 2005  相似文献   

6.
A series of novel tetrad high aspect ratio mesogenic diol monomers 4-{[4-(n-hydroxyalkoxy)-phenylimino]-methyl}-benzoic acid 4-{[4-(n-hydroxyalkoxy)-phenylimino]-methyl}-phenyl ester were prepared with varying alkoxy spacer length (n=2,4,6,8,10) by reacting 4-formylbenzoic acid 4-formylphenyl ester and 4-(n-hydroxyalkoxy) anilines. Two series of thermotropic main chain liquid crystalline unsegmented polyurethanes (PUs) were obtained by the polyaddition of the mesogenic diols with hexamethylene diisocyanate (HMDI) and methylene bis(cyclohexylisocyanate) (H12MDI) in dimethylformamide respectively. The effect of the incorporation of a third component namely polyol on the liquid crystalline properties of the polyurethanes was also studied. Linear segmented PUs were synthesised by a two-step block copolymerisation method. The PUs synthesised were based on six spacer mesogenic diol chain extender, soft segments poly(tetramethylene oxide)glycol (PTMG) (Mn= 650,1000,2000) and polycaprolactone diol (PCL) (Mn=530,1250,2000) of varying molecular weights and different diisocyanates including HMDI, H12MDI and methylene bis(phenylene isocyanate) (MDI). Structural elucidation was carried out by elemental analysis, fourier transform infra red (FT-IR), nuclear magnetic resonance (1H NMR and 13C NMR) spectroscopy. Inherent viscosity of the unsegmented polymers measured in methanesulphonic acid at 26°C was in the range of 0.13 - 0.65 dL/g while the molecular weights and molecular weight distribution of the segmented polyruethanes was determined using gel permeation chromatography (GPC). Mesomorphic properties were studied by differential scanning calorimetry (DSC) and hot stage polarising optical microscopy and the thermal stability was determined by thermogravimetric(TG)analysis. The monomeric diols and the polyurethanes exhibited nematic texture and good mesophase stability. It was observed that the partial replacement of the mesogenic diol by the polyol of varying molecular weights influenced the phase transitions and the occurrence of mesophase textures. The phase transition temperatures of the investigated polyurethanes showed dependence on the chain length of the soft segment and on the content of the mesogen moiety. A higher content of mesogenic moiety was needed to obtain liquid crystalline property when the soft segment length was increased as observed in the case of PTMG. Grained and threaded textures were observed depending on the molecular weight of the soft segment, the mesogen content and the diisocyanate. The stress-strain analyses showed that the polymers bused on high molecular weight PTMG soft segment have elastomeric property while the PCL based PUs displayed no elastomeric property.  相似文献   

7.
Thermotropic main chain liquid crystalline polyurethanes were prepared from 4-{[4-(6-hydroxyhexyloxy)phenylimino]methyl}benzoic acid 4-{[4-(6-hydroxyhexyloxy)phenylimino]methyl}phenyl ester (mesogenic diol) and 1,6-hexamethylene di-isocyanate. The effects of partial replacement of the mesogenic diol by 20-50 mol% of poly(tetramethylene oxide)glycol (PTMG) of varying molecular mass (M n =650, 1000, 2000) on the liquid crystalline properties were studied. Structural characterization was carried out by FTIR spectroscopy and the molecular mass distribution was determined by GPC. Differential scanning calorimetry and hot stage polarizing optical microscopy were used to study the mesomorphic properties. It was observed that the partial replacement of the mesogenic diol by PTMG of varying molecular masses influenced the phase transitions and the occurrence of mesophase textures. When the molecular mass of PTMG was enhanced, a higher content of mesogenic agent was needed to obtain liquid crystalline properties.  相似文献   

8.
The surface properties of two block copolyurethanes based on 1,2-ethylene bis(4-phenyl isocyanate) (P2PDI), poly(tetramethylene ether glycol) (PTMG) or poly(propylene glycol) (PPG), and ethylene diamine, were investigated by attenuated total reflectance (ATR) infrared spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis. The air-facing surfaces (AFS) of both materials are more abundant in the PPG or PTMG soft segment. More PTMG present on AFS indicates that the PTMG soft segment is more hydrophobic than PPG. Besides, the ATR spectra revealed that more phase mixing occurs in the near-surface region than in the bulk and the domain/matrix interface tends to orient to this region for both samples.  相似文献   

9.
Three series of novel thermotropic liquid crystalline polyurethane elastomers (TLCPUEs) were studied. Hard segments were formed by using hexamethylene diisocyanate (HDI) reacted with a mesogenic unit, benzene-1,4-di(4-iminophenoxy-n-hexanol), which also acted as a chain extender. Three diols: 1,10-decanediol,poly(oxytetramethylene) glycol (PTMEG) M n = 1000 and PTMEG M n = 2000 were used as the soft segments. The effects of soft segments of polyurethanes on the liquid crystalline behavior were studied. Higher molecular weight TLCPUEs were obtained by adding 30?50 mol % of mesogenic segments to diisocyanates. In contrast to a conventional chain extender such as 1,2-ethylene glycol or 1,4-butyl glycol, the synthesized polyurethane elastomers exhibited a mesophase transition by using a mesogenic unit as the chain extender. Mesophase was found for all synthesized LC polyurethanes except of polymers H2-A-12 and H2-A-7. The structures and the thermal properties of all synthesized TLCPUEs were studied by using FTIR spectroscopy, wide-angle x-ray diffraction (WAXD) and DSC measurements, a polarizing microscope equipped with a heating stage, dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). Mechanical properties were also examined by using a tensilemeter. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
Two series of poly(amide-azomethine-ether)s and poly(ester-azomethine-ether)s were prepared by the condensation of dialdehydes with N,N'-bis(aminobenzamide)s and 4,4′-bis(p-aminophenyl)terephthalester, respectively. The thermotropic liquid crystalline properties were examined by DSC microscopic observations. Almost half of the synthesized polymers exhibit thermotropic liquid crystalline properties which are in the nematic phase since threaded and/or Schlieren textures are observed under polarizing microscope. The effects of the number of amide group and the nature of the nonlinear bibenzamide moiety, which link in the rigid segment, on the thermotropic liquid crystalline properties of the homo- and co-poly(amide-azomethine-ether)s were also investigated.  相似文献   

11.
X‐ray absorption spectroscopy [extended X‐ray absorption fine structure (EXAFS) and X‐ray absorption near‐edge structure (XANES)], differential scanning calorimetry, and Raman spectroscopy measurements were performed for a series of liquid polyether/salt systems prepared with poly(tetramethylene glycol) (PTMG) and the copolymer poly(tetramethylene glycol‐co‐ethylene glycol) as matrices and zinc and cobalt chlorides as dopants in the concentration range of n = 30–90, where n is the molar ratio of oxygen to metal cation. According to EXAFS, XANES, and Raman results, even in diluted solutions, these complexes exist mostly as undissociated ZnCl2 and CoCl2 species, presenting a weak cation–polymer interaction. EXAFS results indicate that for polymer/ZnCl2 systems, the nearest metal neighbors are only chlorine atoms. However, for polymer/CoCl2 samples, oxygen is also observed coordinating the metal. Raman spectra do not support any feature related specifically to the cation–polymer interaction. Nevertheless, for both salts the symmetric stretching vibrations are located in frequencies characteristic of salt in solution, which means that the polymer solvating action is effective. Differential scanning calorimetry data show an increase in the glass‐transition temperature for all polymer/salt systems in relation to the pure polymer samples, a consequence of the increase in the macromolecular chain stiffening produced by the presence of the salt. This result corroborates the existence of polymer–salt interactions. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2572–2580, 2001  相似文献   

12.
A branched methacrylated poly(caprolactone‐co‐lactic acid) and methacrylated poly(tetramethylene ether glycol) (PTMG‐IEM) resins were synthesized. 1H‐NMR spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy (ATR‐FTIR) spectroscopy, and gel permeation chromatography confirmed the chemical structures of copolymers. The photoinitiated polymerization of formulation composed of various amounts of methacrylated poly(caprolactone‐co‐lactic acid), PTMG‐IEM, poly(ethylene glycol) diacrylate, water, and photoinitiator were performed. The curing reactions were followed by photo‐DSC (Differential scanning calorimetry). Gel fraction was calculated from the insoluble part and found as ≥93%. Swelling and contact angles were measured, and all increased with the increasing amount of PTMG‐IEM in network formulations. In vitro degradation studies were performed at 37 °C in phosphate‐buffered saline (pH 7.4). Collagen‐modified polymers were also prepared and introduced as a bioactive moiety to modify the polymer to enhance cell affinity. To compare the cell adhesion affinity to the polymer with and without collagen, cell growth experiments were performed. The results showed that collagen improves the cell adhesion onto the polymer surface. With the increasing amount of collagen, cell viability increases 86% (ECV304, p < 0.05) and 83% (3 T3, p < 0.05). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Monomers with leucine–tyrosine linkages were synthesized using diphenyl phosphoryl azide as a coupling reagent. Leucyltyrosylpoly(propylene glycol) bis(2-aminopropyl ether) tyrosylleucine (monomer 1 ) has a longer spacer: poly(propylene glycol) bis(2-aminopropyl ether) (Jeffamine® D-400), and leucyltyrosyliminohexamethyleneiminotyrosylleucine (monomer 2 ) has a shorter spacer: hexamethylenediamine. Polyureas from monomers 1 and 2 with hexamethylene diisocyanate and methylenedi-p-phenyl diisocyanate were synthesized. Polyamide, polyesteramide from monomer 2 were synthesized. The characterization of these polymers using 1H-NMR, 13C-NMR, solid-state 13C-NMR, IR, GPC, and also thermal analysis are presented. © 1997 John Wiley & Sons, Inc.  相似文献   

14.
A series of novel rod–coil diblock copolymers on the basis of mesogen‐jacketed liquid‐crystalline polymer were successfully prepared by atom transfer radical polymerization from the flexible polydimethylsiloxane (PDMS) macroinitiator. The hybrid diblock copolymers, poly{2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene}‐block‐polydimethylsiloxane, had number‐average molecular weights (Mn's) ranging from 9500 to 30,900 and relatively narrow polydispersities (≤1.34). The polymerization proceeded with first‐order kinetics. Data from differential scanning calorimetry validated the microphase separation of the diblock copolymers. All block copolymers exhibited thermotropic liquid‐crystalline behavior except for the one with Mn being 9500. Four liquid‐crystalline diblock copolymers with PDMS weight fractions of more than 18% had two distinctive glass‐transition temperatures. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1799–1806, 2003  相似文献   

15.
A novel phosphorus‐containing thermotropic liquid crystalline copolyester with kinked unit named as poly(hydroxybenzate‐co‐DOPO‐benzenediol dihydrodipheyl ether terephthalate) (PHDDT) was synthesized successfully by melting transesterification from terephthalic acid (TPA), p‐hydroxybenzoic acid (p‐ABH), 2‐(6‐oxid‐6H‐dibenz(c, e) (1,2) oxaphosphorin 6‐yl)1,4‐benzenediol (DOPO‐HQ), and 4,4′‐dihydroxydiphenyl ether (DOP). The chemical structure, the mesophase behavior, and the thermal properties of the copolyesters were characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (1H, 13C, and 31P NMR), wide‐angle X‐ray diffraction, polarizing light microscopy (PLM), differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. Results suggested that PHDDTs exhibited the typical nematic mesophase that occurred at low temperatures and maintained in a broad temperature range from 230 °C to higher than 400 °C, and had low glass transition temperature ranging from 154.5 to 166.9 °C. The novel phosphorus‐containing thermotropic liquid crystalline copolyester will have a potential application in preparing various in situ reinforced polymer materials with excellent mechanical properties and flame retardancy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4703–4709, 2009  相似文献   

16.
The phase‐separation behavior of thermoplastic poly(ester‐imide) [P(E‐I)] multiblock copolymers, (A‐B)n, was investigated by a stepwise variation of the imide content. All the multiblock copolymers were synthesized by solution polycondensation with dimethylformamide as a solvent. P(E‐I)s were prepared with anhydride‐terminated polyester prepolymer and diisocyanates. Polyester prepolymers were prepared by the reaction of pyromellitic dianhydride and two different polyols [poly(tetramethylene oxide glycol) (PTMG) and polycaprolactone diol (PCL)]. Structural determination was done with Fourier transform infrared spectroscopy and Fourier transform NMR, and the molecular weight was determined by gel permeation chromatography. The effect of the imide content on the thermal properties of the synthesized P(E‐I)s was investigated by thermogravimetric analysis and differential scanning calorimetry. The polymers were also characterized for static and dynamic mechanical properties. Thermal analysis data indicated that the polymers based on PTMG were stable up to 330 °C in nitrogen atmosphere and exhibited phase‐separated morphology. Polymers based on PCL showed multistage decomposition, and the films derived from them were too fragile to be characterized for static and dynamic mechanical properties. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 341–350, 2004  相似文献   

17.
A series of liquid crystal α-[bis(2-hydroxyethyl)amino]-ω-(4-nitroazobenzene-4′-oxy)alkanes (Cn-diol) with different alkyl chain length has been synthesized. All Cn-diols exhibit a smectic phase that has been identified by means of polarizing microscopy and differential scanning calorimetry. These compounds are suitable monomers for the synthesis of side-chain liquid crystalline polyurethanes and polyesters. They were polymerized with hexamethylene diisocyanate to corresponding SCLC polyurethanes in which the spacer length was varied from 2 to 12 methylene units. Polyurethanes (CnP) with spacer lengths n ≥ 4 exhibited liquid crystalline behavior. Fourier transform infrared temperature studies of the CnP were done focusing on H-bonds between the N H and CO groups of the urethane backbone. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2871–2888, 1997  相似文献   

18.
Polyethers could form hydroperoxide under air-oxidation or photo-oxidation in the presence of H_2O_2. The scission of ether linkage induced by moderate oxidation was prevented by controlling the reaction time and hydroperoxide concentration. The oxidation rate was affected by the end groups of polyethers. The decreasing order of oxidation rate for various poly(tetramethylene ether) glycol derivatives having different end groups are as follows: poly(tetramethylene ether) glycol (PTMG)>poly(tetramethylene ether)acetate (PTMGAC) >poly(tetramethylene ether) phenyl carbamate (PTMGPC). The urethane end groups in PTMGPC increase the resistance toward oxidation. Polyether hydroperoxide reacts with ferrous ion or N,N-dimethyl toluidine (DMT) to form polymericoxy radical which then initiates the graft copolymerization of vinyl monomers at low temperature, and was devoid of homopolymerization. The copolymer after separation and purification was proved to be a graft one by IR analysis and elemental analysis.  相似文献   

19.
Three series of new thermoplastic, high molecular weight, segmented thiopolyurethanes were synthesized by a one-step melt polymerization from newly obtained thiodiols, including bis[4-(2-hydroxyethyl)thiomethylphenyl]methane, bis[4-(3-hydroxypropyl)thiomethylphenyl]methane, and bis[4-(6-hydroxyhexyl)thiomethylphenyl]methane (BHHM), as chain extenders; hexamethylene diisocyanate; and 20–80 mol % poly(oxytetramethylene) glycol (PTMG; number-average molecular weight = 1000) as the soft segment. Solution polymerization with the chain extender BHHM gave considerably lower molecular weight polymers. The structures of all the polyurethanes were determined with Fourier transform infrared and X-ray diffraction analysis. The thermal properties of the polyurethanes were examined with differential scanning calorimetry and thermogravimetric analysis. Shore A/D hardness and tensile properties were also determined. All the polyurethanes showed partially crystalline structures; those obtained with 40–80 mol % PTMG were elastomers. An increase in the PTMG content decreased hardness, modulus of elasticity, and tensile strength, whereas elongation at break increased. BHHM-based polyurethanes obtained in the melt showed the best tensile properties. The polyurethanes exhibited definite glass transitions (−70 to −59 °C) that were nearly independent of the hard-segment content up to about 50 wt % (40–80 mol % PTMG), indicating the existence of mainly microphase-separated soft and hard segments. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1733–1742, 2001  相似文献   

20.
The thermal and oxygen transport properties of a series of thermoplastic polyurethanes (TPUs) based on 4,4′‐methylene diisocyanate (MDI) and 1,4‐butanediol (BD) as hard segments, and poly(tetramethylene glycol) (PTMG) or poly(butylene adipate) (PA) as soft segments, are studied. Oxygen permeabilities (P) of both polyester‐based and polyether‐based TPUs increase with decreasing hard segment fractions. Oxygen solubility (S) and diffusivity (D) can be derived from permeation curves. S correlates with the amount of excess free volume as determined by the difference between glass‐transition and testing temperatures (i.e., the degree of super cooling) and decreases with the increased Tg in polyester‐based TPUs. The intensity of low temperature gamma transition reflects the activation energy for D; the higher the intensity is, the lower D is annealed TPU samples exhibited higher oxygen permeabilities as well as lower storage moduli at room temperature, despite modest increases in overall crystallinity. Dedensification of the soft segment phase during annealing/crystalline phase growth is the most likely explanation for loss of mechanical and barrier properties after annealing as partially confirmed by Fourier transform infrared spectroscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号