首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
As an alternative to strong acid reaction media for the Friedel–Crafts acylation for a polymer‐forming reaction, a mild polyphosphoric acid (PPA) with optimized amount of phosphorous pentoxide (P2O5) has been tested for the polymerization of AB monomers 4‐(2‐phenoxyethoxy)benzoic acid and 3‐(2‐phenoxyethoxy)benzoic acid, and an AB2 monomer 3,5‐bis(2‐phenoxyethoxy)benzoic acid. The reaction progress of AB2 monomer was conveniently traced by FTIR spectroscopy monitoring aromatic ketone (C?O) stretching bands arisen from carboxylic acid groups at the chain ends and carbonyl groups in the backbone as a function of reaction time at 110 °C. The resultant linear and hyperbranched polymers containing flexible oxyethylene spacers, which were prone to be hydrolyzed in strong acids at elevated temperature, displayed high intrinsic viscosities. Thus, the reaction medium PPA/P2O5 mixture as an electrophilic substitution reaction was indeed benign not to depolymerize growing polymer molecules but strong enough for the direct generation of carbonium ion from carboxylic acid to promote efficient polymerization. The resultant hyperbranched poly(etherketone) (PEK) displayed the best solubility among samples. All PEKs showed good thermal stability; glass transition temperatures were in the range of 90–117 °C; 5% weight loss generally occurred at greater than 345 °C in air. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5112–5122, 2007  相似文献   

2.
Novel aromatic polyimides containing symmetric, bulky di-tert-butyl substituents unit were synthesized from 1,4-bis(4-aminophenoxy)2,5-di-tert-butylbenzene (BADTB) and various aromatic tetracarboxylic dianhydrides by the conventional two-stage procedure that included ring-opening polyaddition in a polar solvent such as N,N-dimethylacetamide to give poly(amic acid)s, followed by cyclodehydration to polyimides. The diamine was prepared through the nucleophilic displacement of 2,5-di-tert-butylhydroquinone with p-chloronitrobenzene in the presence of K2CO3, followed by catalytic reduction. Depending on the dianhydrides used, the poly(amic acid)s obtained had inherent viscosities of 0.83–1.88 dL g−1. Most of the polyimides formed transparent, flexible, and tough films. Tensile strength and elongation at break of the BADTB-based polyimide films ranged from 68–93 MPa and 7–11%, respectively. The polyimide derived from 4,4′-hexafluoro-isopropylidenebisphathalic anhydride had better solubility than the other polyimides. These polyimides had glass transition temperatures between 242–298°C and 10% mass loss temperatures were recorded in the range of 481–520°C in nitrogen. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1527–1534, 1997  相似文献   

3.
A polymer blend consisting of polyimide (PI) and polyurethane (PU) was prepared by means of a novel approach. PU prepolymer was prepared by the reaction of polyester polyol and 2,4-tolylenediisocyanate (2,4-TDI) and then end-capped with phenol. Poly(amide acid) was prepared from pyromellitic dianhydride (PMDA) and oxydianiline (ODA). A series of oligo(amide acid)s were also prepared by controlling the molar ratio of PMDA and ODA. The PU prepolymer and poly(amide acid) or oligo(amide acid) solution were blended at room temperature in various weight ratios. The cast films were obtained from the blend solution and treated at various temperatures. With the increase of polyurethane component, the films changed from plastic to brittle and then to elastic. The poly(urethane–imide) elastomers showed excellent mechanical properties and moderate thermal stability. The elongation of films with elasticity was more than 300%. The elongation set after the breaking of films was small. From the dynamic mechanical analysis, all the samples showed a glass transition temperature (Tg) at ca. −15°C, corresponding to Tg of the urethane component, suggesting that phase separation occurred between the two polymer components, irrespective of polyimide content. TGA and DSC studies indicated that the thermal degradation of poly(urethane–imide) was in the temperature range 250–270°C. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3745–3753, 1997  相似文献   

4.
Anhydrous, proton‐conducting polymer electrolytes of poly(vinylpyrrolidon) (PVP) with polyphosphoric acid (PPA) were prepared. PVP‐x‐PPA blends were obtained for 0.5 ≤ x ≤ 3, where x was the number of moles of PO per polymer repeat unit. Fourier transform infrared studies indicated protonation of the carbonyl group in the five‐member ring. Thermogravimetric analysis showed that these materials were stable up to about 180 °C. Differential scanning calorimetry data demonstrated that the addition of the acid plasticized the material, shifting the glass‐transition temperature from 180 °C for the pure polymer to ?23 °C for x = 3. The temperature dependence of the mechanical properties was investigated with shear experiments. The direct‐current conductivity increased with x and reached about 10?5 S/cm at ambient temperature. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1987–1994, 2001  相似文献   

5.
β-Cyclodextrin (CD) gels crosslinked by epichlorohydrin (CD-gel) were modified with poly(N-isopropylacrylamide) (PIPA; Mn 4900) chains. The CD residue in the gel associated with 8-anilino-1-naphthalenesulfonic acid (ANS) more strongly than the free PIPA-carrying CD. The van't Hoff plot for complexation of ANS with the gel drifted largely from linear relationship above the coil-globule transition temperature of individual PIPA chains. Furthermore, a relatively more significant temperature effect on the stereoselective adsorption of phenylalanine to the CD gel was observed by the modification with PIPA chains. These results imply that the ability of the CD-gel–PIPA conjugate to form inclusion complex could be skillfully controlled by temperature. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1535–1541, 1997  相似文献   

6.
Polycondensations of dicarboxylic acids with diols having amide moieties derived from optically active amino alcohols were carried out. Polymers with M ns 8,700–17,400 were obtained by the polycondensations using 1.2 eq. of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC·HCl) in DMF at room temperature for 8 h in satisfactory yields. The Tg of the polymer rose with decrease of the methylene chain length of the dicarboxylic acid. In the Tgs of the polymers from L-leucinol, even-odd effect was observed with increase of the methylene chain length of the dicarboxylic acid. The molecular rotation values of the polymers were constant except for the polymer from succinic acid, which showed the negatively largest one. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2925–2934, 1997  相似文献   

7.
Self‐controlled synthesis of hyperbranched poly(ether‐ketone)s (HPEKs) were prepared from “A2 + B3” approach by using different monomer solubility in reaction medium. 1,3,5‐Triphenoxybenzene as a hydrophobic B3 monomer was reacted with commercially available terephthalic acid or 4,4′‐oxybis(benzoic acid) as a hydrophilic A2 monomer in a hydrophilic reaction medium, polyphosphoric acid (PPA)/phosphorous pentoxide (P2O5). The resultant HPEKs were soluble in various common organic solvents and had the weight‐average molecular weight in the range of 3900–13,400 g/mol. The results implied that HPEKs were branched structures instead of crosslinked polymers. The molecular sizes and shapes of HPEKs were further assured by morphological investigation with scanning electron microscopy (SEM) and atomic force microscopy (AFM). Hence, the applied polymerization condition was indeed strong enough to efficiently facilitate polycondensation via “direct” Friedel‐Crafts reaction without gelation. It could be concluded that the polymer forming reaction was kinetically controlled by automatic and slow feeding of the hydrophobic B3 monomer into the hydrophilic reaction mixture containing hydrophilic comonomer. As a result, hyperbranched structures were formed instead of crosslinked polymers even at full conversion (equifunctional monomer feed ratio). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3326–3336, 2009  相似文献   

8.
The stability of benzobisoxazole and benzobisthiazole compounds and polymers under hydrolytic conditions was studied. 2,6-Bis(4-tert-butylphenyl)benzo[1,2-d;4,5-d′]bisoxazole (1) dissolved in acetonitrile containing sulfuric acid and water at 80°C is stable. A suspension of 2,6-bis[4-(2-benzoxazoyl)phenyl]benzo[1,2-d;5,4-d′]bisoxazole (2) in 0.2 N H2SO4 or 0.2 N NaOH solution at 100°C for 21 days is stable. The intrinsic viscosity of a poly(p-phenylene)benzobisoxazole (PBO) fiber sample soaked in 0.2 N H2SO4, water with 1 wt % polyphosphoric acid (PPA), or 0.2 N NaOH remained the same. Under very severe hydrolytic conditions such as dissolution of compound 2 or PBO in PPA or methanesulfonic acid with residual water followed by coagulation in water, benzobisoxazole underwent bond cleavage to generate carboxylic acid and o-aminophenol functional groups. This is in contrast to an earlier hypothesis that the decrease in intrinsic viscosity under these conditions was due to chain association. Poly(p-phenylene)benzobisthiazole (PBT) also underwent bond cleavage under these very severe conditions, which are unlikely to be encountered in normal applications. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2637–2643, 1999  相似文献   

9.
Wide-angle x-ray diffraction studies were performed for as-spun wet poly(p-phenylene terephthalamide) fiber. The effects of sorbed water on the equatorial diffractions from the (110) and (200) crystal planes and on the meridional diffractions from the (002), (004), and (006) crystal planes were analyzed during desorption and absorption. There was no significant change in the d-spacing from the respective crystal plane irrespective of the moisture (water) regain. The ratio of the diffracted intensity from the (110) diffraction to that from the (200) diffraction remarkably increased by removing the sorbed water. The crystallite size estimated from the (110) diffraction, L110, also increased as the moisture regain decreased, while the L200 did not increase. The longitudinal size of paracrystallite, D001, also remarkably increased with the decrease in moisture regain with the lattice distortion factor, gII, kept unchanged. These results strongly suggested the growth of the crystallite via hydrogen bonds in the lateral (b-axis) direction. The growth of the lateral size of crystallite also accompanied the longitudinal growth of crystallite during desorption. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1423–1432, 1997  相似文献   

10.
The synthesis, characteristic ratio C and glass transition temperature (Tg) of poly(tetrahydrofurfuryl acrylate) (PTHFA) and of poly(2-ethylbutyl acrylate) (P2EBA) are reported. P2EBA has slightly lower flexibility (C = 9.2) than PTHFA (C = 8.6), mainly because of the higher bulkiness of its side group and the closer proximity to the main chain. The C results compared with the corresponding polymethacrylates show an increase in flexibility due to the absence of the α-methyl group. Comparison with poly(methyl acrylate) clearly shows the influence of the bulkiness of the side group on the chain flexibility. The lower Tg of P2EBA than that of PTHFA may be explained by the higher flexibility of the 2-ethylbutyl side group. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1589–1592, 1997  相似文献   

11.
A series of novel stereoregular one‐handed helical poly(phenylacetylene) derivatives ( PPA‐1 and PPA‐1a~g ) bearing l ‐phenylglycinol and its phenylcarbamate residues as pendants was synthesized for use as chiral stationary phases (CSPs) for HPLC, and their chiral recognition abilities were evaluated using 13 racemates. The phenylcarbamate residues include an unsubstituted phenyl, three chloro‐substituted phenyls (3‐Cl, 4‐Cl, 3,5‐Cl2), and three methyl‐substituted phenyls (3‐CH3, 4‐CH3, 3,5‐(CH3)2). The acidity of the phenylcarbamate N‐H proton and the hydrogen bonds formed between the N‐H groups of the phenylcarbamate residues were dependent on the type, position, and the number of substituents on the phenylcarbamate residues. The chiral recognition abilities of these polymers significantly depended on the dynamic helical conformation of the main chain with more or less regularly arranged pendants. The chiral recognition abilities seem to be improved by the introduction of substituents on the phenylcarbamate residues, and PPA‐1d bearing the more acidic N‐H groups due to the 3,5‐dichloro substituents, exhibited a higher chiral recognition than the others. PPA‐1d showed an efficient chiral recognition for some racemates, and baseline separation was possible for racemates 5 , 11 , 12 , and 15 . © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 809–821  相似文献   

12.
Blends of erucamide (13-cis-docosenamide) and isotactic poly(propylene) were analyzed by means of dynamic mechanical (at 3, 10, and 30 Hz) and dielectric (at 1, 6, and 20 kHz) techniques. The dependence of tan δ with temperature for each one of the blends has been fitted to Gaussian functions in order to deconvolute the overlapped relaxations. Three relaxations for i-PP, αi-PP, βi-PP, γi-PP, three for erucamide, αERU, βERU, and γERU, and five for their blends have been observed and assigned. They do not vary appreciably with composition, suggesting that the components are incompatible either as globules in the matrix or in the amorphous regions of the spherulites, and/or in their surroundings. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1473–1482, 1997  相似文献   

13.
Polymerization of L ‐lactide (LA) was performed in the presence of trifluoromethanesulfonic acid (CF3SO3H) via an activated monomer mechanism to synthesize various block copolymers composed of polyethyleneglycol (PEG) and poly(L ‐lactide) (PLLA). The PLLAs obtained had molecular weights close to theoretical values calculated from LA/PEG molar ratios and exhibited monomodal GPC curves. A 1H NMR spectroscopic study showed that the LA carbonyl carbon signal exhibited a change in chemical shift to lower field, caused by electron delocalization of the carbonyl carbon by CF3SO3H. We successfully prepared PEG and PLLA block copolymers using this activated monomer mechanism. We concluded that synthesis proceeded by LA ring‐opening polymerization caused by PEG in the presence of CF3SO3H to yield PEG and PLLA block copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5917–5922, 2009  相似文献   

14.
High molecular weight poly(p-phenylenebenzobisoxazole) (PBO) was prepared from poly(terephthalic acid anhydride) (PTAA) and 1,3-diamino-4,6-dihydroxybenzene dihydrogenchloride in polyphosphoric acid (PPA). PTAA may react directly with the o-aminophenol groups to form benzoxazoles or react with PPA to generate terephthalic acid (TA) of very small particle size, which dissolves readily in PPA. PTAA provides the advantages of bypassing the requirement of small particle size TA, reducing the amount of water liberated by half, and possibly providing faster kinetics in PBO synthesis. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
Anionic polymerizations of 1,1-dimethylsilacyclobutane, 1,1-diethylsilacyclobutane and 1-methyl-1-phenylsilacyclobutane were investigated. Addition of 5 mol % of butyllithium to a solution of 1,1-dimethylsilacyclobutane in THF-hexane (1 : 1) at −48°C provided poly(1,1-dimethylsilabutane) in 99% yield. Mn and Mw/Mn of the obtained polymer were 2400 and 1.10. This polymerization proceeded with a living nature. Mn increased in proportion as the yield of polymer increased. Addition of the second fresh feed of the monomer to the reaction mixture restarted polymerization of the second monomer at the same rate as in the initial stage. Addition of styrene to the living poly(1,1-dimethylsilabutane) provided a poly(1,1-dimethylsilabutane-b-styrene) block copolymer. It was also found that a polymerization of 1,1-diethylsilacyclobutane in THF-hexane at −48°C showed a living nature. In contrast, a polymerization of 1-methyl-1-phenylsilacyclobutane in THF at −78°C did not show a living nature. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3207–3216, 1997  相似文献   

16.
The prepoly(tetrahydrofuran) [poly(THF)] capped with hydroxyl and tetrahydrothiophenium groups was prepared using tetrahydrothiophene to terminate the living cationic polymerization of THF initiated by BF3·OEt2 and epichlorohydrin (ECH) at low conversion. Well-defined star-shaped poly(THF) polyols were synthesized by an ion-coupling reaction of the prepoly(THF) with tri- or tetrafunctional benzenecarboxylates, respectively, and this process proceeded by precipitation when the solution of the prepolymer in THF was added to an aqueous solution containing an excess of the corresponding coupling reagent. GPC studies showed that all of the carboxylate groups of every coupling reagent molecule took part in the ion-coupling reaction simultanously. This was confirmed by IR spectra. Almost all of the prepolymers were coupled to form star polymers after repeating the precipitation four times. 1H-NMR illustrated that both the star-shaped polymers and the prepolymers contained primary and secondary hydroxyl end groups. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3403–3408, 1997  相似文献   

17.
The polymerization of phenylacetylene with the microheterogeneous Ti(OR)4? AlEt3 and homogeneous vanadium acetylacetonate/aluminum triethyl Ziegler–Natta catalyst systems was analyzed. The effects of some cocatalysts (e.g., pyridine and phenylacetylide) and the solvent, temperature, and time were analyzed. Both catalyst systems produced poly(phenylacetylene) (PPA) and a 1,2,4‐triphenylbenzene (1,2,4‐TPB)/1,3,5‐triphenylbenzene (1,3,5‐TPB) cyclotrimer mixture in various molar ratios. The titanium catalyst showed the lowest PPA/triphenylbenzene ratio. The 1,2,4‐TPB/1,3,5‐TPB molar ratio decreased with increasing PPA. On the basis of the spectroscopic data, PPA had a cis–transoidal stereoregular structure. The molecular mass of PPA was determined with vapor pressure osmometry and gel permeation chromatography. A mechanism for the polymerization reaction versus cyclotrimerization was proposed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1228–1237, 2005  相似文献   

18.
Thermally stable, nonrigid-rod poly(benzobisthiazoles), (R)TPA-PBZT , where R = H, Me, NMe2, and OH, and poly(benzobisoxazoles), (R)TPA-PBO , where R = Me, NMe2 containing electron-rich triarylamine groups with various para-substituents (Rs) on the pendent phenyl ring, were synthesized from either 2,5-diamino-1,4-benzenedithiol dihydrochloride or 2,4-diamino-1,5-benzenediol dihydrochloride and the respective triarylamine-based dinitrile or diacid monomer in polyphosphoric acid. Whereas (R)TPA-PBZT polymers were obtained in moderate molecular weights, analogous (R)TPA-PBO polymers were only prepared in low molecular weights. No lyotropic behaviors, characteristic of the unmodified rigid-rod benzazole polymers, as evidenced by the absence of either stir opalescence or birefringence under crosspolarizers, were observed for these homopolymers at about 10 wt % polymer concentration. Among these polymers, only (Me)TPA-PBZT and (NMe2)TPA-PBZT formed cast films with good mechanical integrity. In their pristine state, their film conductivity values were in the range of 10−10–10−9 S/cm at room temperature. Upon exposure to iodine vapor, their conductivities were increased to the maximal values of 5.0 × 10−5 S/cm ( (Me)TPA-PBZT ) and 4.1 × 10−4 S/cm ( (NMe2)TPA-PBZT ). © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1909–1924, 1997  相似文献   

19.
Films consisting of a rigid-rod polymer and thermoset resin matrixes were prepared. Poly{(benzo[1,2-d : 5,4-d′]bis(oxazole-2,6-diyl))-1,4-phenylene} (PBO) in polyphosphoric acid (PPA) was blended with 2,6-bis(4-benzocyclobutene) benzo[1,2- d : 5,4-d′]bis(oxazole) ( 1 ), and films were extruded from these solutions. The coagulated films were soluble in methanesulfonic acid (MSA). After heat treatment at 300°C, the films became insoluble in MSA. Crosslinked films were homogeneous and did not show phase segregation between the two components. These were composite films at the molecular level. Transmission electron microscopy (TEM) showed enhanced interlayer integrity and reduced microfibril separation for the molecular composite films as compared to normal PBO film. These films had significantly better torsion and tension delamination resistance. The incorporation of a second component did not sacrifice the tensile properties of PBO film. Thermal stability of these composite films was only slightly lower than that of normal PBO film. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2157–2165, 1997  相似文献   

20.
The synthesis of poly(glycolic acid) (PGA) by polyesterification of glycolic acid was studied using ionic liquids, mainly 1,3‐dialkylimidazolium salts, as reaction media. The 1H NMR spectra of PGA oligomers were assigned and end‐group signals were used to follow the reaction. Low PGA yields were obtained by the direct polyesterification of glycolic acid at 200–240 °C, because of monomer evaporation during the reaction. On the other hand, PGAs of DP n up to 45 were obtained by the postpolycondensation of a preformed oligomer in 1‐butyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)amide (BMIm+Tf2N?). The precipitation of PGA in reaction medium at long reaction times limited the achievable molar mass. Rate constants were determined for catalyzed and noncatalyzed reactions, assuming a second‐order reaction mechanism. The efficiency of esterification catalysts such as Zn(OAc)2 was low in these media, as only about twofold increases in reaction rate were observed. This was assigned to the preferential interaction of Zn2+ with ionic liquid anion instead of the polymer carboxylic acid end‐groups. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3025–3035, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号