首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stable aqueous dispersion of polyaniline (PAn) stabilized by a hydrophilic polymer poly(vinyl pyrrolidone) (PVP) exhibits interesting rheological properties different from its components. Shear thinning observed for both PVP and PAn–PVP colloid (PP) indicates partially entangled nature of the later. Linear viscoelastic response of PVP solution exhibit strong frequency dependence of elastic (G′) and viscous (G″) modulus over the whole frequency range (0.1–100 ras/s) where G′ never exceeds G″ indicating the applicability of the Rouse‐Zimm model to this system. On the other hand, there is a crossover of G′ and G″ in the rheological profile of PP dispersion so that a single relaxation time model can be applicable. Therefore, PVP presents an entangled polymeric system and supposed to have a spectrum of relaxation times, whereas PP resembles to a physically crosslinked system with a single relaxation time. Increasing the extent of hydrogen bonding within the system (by raising the fraction of PAn or by leaving the solution undisturbed for long) relaxation time also becomes longer. The large difference in values of steady and complex shear viscosity (η and η*) within LVE regime reflects that original Cox‐Merz rule is obviously inapplicable to these systems. But at larger strain amplitude, η and η* are satisfactorily coincident that indicates a broader applicability of the modified Cox‐Merz rule. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2443–2455, 2008  相似文献   

2.
The spinnability and polydispersity of polyacrylonitrile/dimethyl sulfoxide (PAN/DMSO)/H2O spinning solutions with conventional PAN molecular weight and comparative high PAN concentration have been investigated using a cone‐plate rheometer. It is observed from the measurements that, the viscosities of the solutions decreased with the rising of shear rate, and then stabilized to almost the same value, regardless of the PAN concentration. The chain orientation in the fiber formed under constant shear rate cannot be changed considerably even after long relaxation of more than 900s. For dynamic experiments, a steady increase of both G′ and G″ with escalating oscillation frequency was seen for all samples. Higher viscous‐elastic modulus at higher H2O content was found, too. It is also concluded from the log G′ ? log G″ plot and the gel point that the PAN/DMSO/H2O system with regular PAN molecular weight behaves very close to a mono‐disperse system, thus very suitable for gel spinning and for preparation of high performance PAN precursor fiber. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1437–1442, 2009  相似文献   

3.
A study on the correlation between electrical percolation and viscoelastic percolation for carbon black (CB) and carbon fiber (CF) filled high‐density polyethylene (HDPE) conductive composites was carried out through an examination of the filler concentration (?) dependence of the volume resistivity (ρ) and dynamic viscoelastic functions. For CB/HDPE composites, when ? was higher than the modulus percolation threshold (?G ~ 15 vol %), the dynamic storage modulus (G′) reached a plateau at low frequencies. The relationship between ρ and the normalized dynamic storage modulus (Gc/Gp, where Gc and Gp are the dynamic storage moduli of the composites and the polymer matrix, respectively) was studied. When ? approached a critical value (?r), a characteristic change in Gc/Gp appeared. The critical value (Gc/Gp)c was 9.80, and the corresponding ?r value was 10 vol %. There also existed a ? dependence of the dynamic loss tangent (tan δ) and a peak in a plot of tan δ versus the frequency when ? approached a loss‐angle percolation (?δ = 9 vol %). With parameter K substituted for A, a modified Kerner–Nielson equation was obtained and used to analyze the formation of the network structure. The viscoelastic percolation for CB/HDPE composites could be verified on the basis of the modified equation, whereas no similar percolation was found for CF/HDPE composites. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1199–1205, 2004  相似文献   

4.
Studies on the relationship between resistivity and dynamic rheological properties of carbon black‐filled high‐density polyethylene (CB/HDPE) composites were carried out. Change of resistivity ρ is associated with the dynamic modulus before the positive temperature coefficient/negative temperature coefficient (PTC/NTC) transition temperature. When the temperature approaches the melting point of HDPE, ρ increases rapidly with a decreasing modulus, corresponding to PTC transition. The resistivity‐dynamic viscoelasticity relationship in the PTC region can be divided into two parts in which the changes of ρ with storage modulus G′ and loss modulus G″ can be described by the scaling laws given by the critical storage modulus and loss modulus Gc and Gc; adjustable parameters ρ′1c, ρ′2c, ρ″1c and ρ″2c; and nonlinear exponents n and m, respectively. The accordance between the experimental data and the scaling functions of the dimensionless quantities (G′/Gc ? 1) and (G″/Gc ? 1) in the PTC transition region suggests that the ρ jump may be the result of a modulus‐induced percolation. Gc and Gc increase, but the four scaling resistivitis, ρ′1c, ρ′2c, ρ″1c, and ρ″2c, decrease with increasing CB concentration, implying that the microstructure change of the composites is the determinant factor for the PTC behavior and the resistivity‐dynamic modulus relationship. However, ρ′2c and ρ″2c exhibit no scaling dependence. It is suggested that a threshold concentration exists for the modulus of the composites on the basis of examining the plot of both Gc and Gc against CB concentration. The scaling laws G′ ~ Φx and G″ ~ Φy hold for the concentration dependence of the critical modulus when Φ > Φc and the estimated values of x and y are 1.10 ± 0.10 and 0.89 ± 0.29, respectively. The resistivity‐dynamic modulus can shift to form a master curve. The horizontal factors aG and aG and the vertical factors a′ and a″ are relevant to the concentration dependence of the dynamic modulus or PTC behavior. It is believed that the former would be involved in changing the mechanical microstructure formed by the complicated interaction of CB particle and polymer segments, and the latter would be involved in the overall changes of conducting a network during the PTC transition region. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 983–992, 2003  相似文献   

5.
The dynamic mechanical behavior of 10 and 20% poly(vinyl methyl ether)-polystyrene blends has been studied in the frequency range 10?5 Hz to 5 Hz and temperature range 100–450 K. Isochronal plots of modulus G′ and loss factor, tan ?, show the presence of one relaxation process at temperatures below the transition zone. A second relaxation process at intermediate temperatures but below Tg may be inferred from the breadth of the G″ frequency curves in the transition zone of both blends. This process, at 280 < T < 300 K, is independent of PVME concentration and seems to be associated with the local modes of motions of PS chains. The rheological behavior of the blends shows them to be compatible up to 20% PVME. Their G′ and G″ data cannot be shifted along a frequency axis to produce a satisfactory master curve. The departure from thermorheological simplicity is much more clearly observed in the tan ? than in the modulus-frequency plots. This departure is due to the change in the segmental correlation effects, or length, with temperature near Tg. A molecular model of the growth of microshear domains with hierarchically constrained molecular motions, given elsewhere, quantitatively agrees with the dynamic mechanical behavior.  相似文献   

6.
The viscoelastic properties of decrosslinked irradiation‐crosslinked polyethylenes using a supercritical methanol were investigated via oscillatory dynamic shear measurements. Decrosslinked polymers at a low reaction temperature exhibited solid‐like rheological properties, as evidenced by a small slope at G′ and G″, a long relaxation time, slow stress relaxation behavior, and considerable yield stress. In contrast, decrosslinked polymers at a high temperature exhibited liquid‐like rheological properties that included a large slope in G′ and G″, a short relaxation time, fast stress relaxation behavior, and nonyield stress. The difference in the viscoelastic properties of the decrosslinked polyethylenes was attributed to the difference in the gel content with the reaction temperature. A higher gel content induced stronger solid‐like viscoelastic properties. Hence, the rheological measurements were useful for analyzing the molecular structure of decrosslinked polymers using a supercritical fluid. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1265–1270, 2010  相似文献   

7.
Three network structure polymers formed by the chemical reactions of a triepoxide with aniline, 3-chloroaniline,and 4-chloroaniline were prepared and their shear modulus relaxation spectra studied over the 10−3- to 1-Hz range and temperatures up to their rubber modulus region. The decrease in the unrelaxed modulus with increase in temperature is found to be a reflection of both an increase in volume, and a decrease in the relaxed modulus of the sub-Tg relaxations process. It is quantitatively shown that the increase in the rubber modulus with increase in temperature above Tg is predominantly due to an increase in the entropy and not to a decrease in the number of cross-links density on thermal expansion. The unrelaxed modulus remained unaffected by the change in the overall size of the phenyl groups of the amines and of the steric hindrance to their rotations caused by the proximity of the chlorine atom to the cross-linking N-atom in the network structure, but the rubber modulus was effected. The shear modulus spectra could be fitted to a stretched exponential decay function with a temperature-independent stretch parameter of 0.25 for two polymers and 0.22 for one. The time–temperature superposition of the spectra did not yield a master curve, and a vertical displacement of the data also failed to produce it. This was more clearly demonstrated by the spectra of the mechanical loss tangent. After considering the various contributions to the shear modulus, it was concluded that deviations from the time–temperature superposition of the spectra are intrinsic to these polymers and arise from the change in the viscoelastic functions for segmental dynamics on change in the temperature such that the overall distribution of relaxation times remains unaffected. The mechanical loss tangent of the three polymers is found to be higher than that of polycarbonate at ambient temperature, implying a higher loss of mechanical energy before these polymers may fracture. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3071–3083, 1999  相似文献   

8.
The rheological behavior of two hydrogels, poly(sodium acrylate) and polyacrylamide gels, synthesized in the presence of the same crosslinking agent molecule, N,N′-methylene bis-acrylamide, has been investigated. The variation of the norm of the complex shear modulus |G*| vs. the monomer concentration (sodium acrylate or acrylamide) exhibited a different power law, depending on the nature of the monomer molecule. This discrepancy was ascribed to the influence of the properties of the monomer molecules on the crosslinked structure of the gelified networks. The analysis of the experimental results have allowed the suggestion that the elasticity exponent value was dependent on the length and on the conformation of the polymer chains connecting the junctions points of the network. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2535–2541, 1997  相似文献   

9.
For properly chosen elastomer compounds, thermorheological characterization is combined with an examination of the variation of the wet sliding friction with temperature. A conceptual argument leads to the assumption that the wet sliding friction should maximize at the energy dissipation peak associated with the dynamic softening transition at a characteristic frequency determined by the sliding speed and the effective smallest surface asperity scale. The dynamic softening transition is characterized with the peak in tan δ/Gn, where tan δ is the loss tangent, G′ is the elastic modulus, and n is a constant between 0 and 1. The William–Landel–Ferry transform is uncritically applied for extrapolating the position of the peak in tan δ/Gn at high frequencies. Even based on the criterion of tan δ, the results obtained on a concrete surface indicate that the effective smallest asperity scale is of order of 100 μm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2467–2478, 2004  相似文献   

10.
Interactions among annealed spherical polyelectrolyte brushes (SPB) in concentrated aqueous dispersion under the effect of concentration, pH, and salt concentration are investigated by means of rheology, and small angle X‐ray scattering (SAXS). SPB consist of a solid polystyrene (PS) core and linear poly(acrylic acid) (PAA) chains densely grafted onto the core by one end. Rheological investigation demonstrates that the viscosity, the storage modulus G′ and the loss modulus G″ of SPB dispersion increase significantly upon increasing the SPB concentration and pH value which reflects the enhanced interactions among SPB. At high pH, a further increase in pH from 8 to 13 has almost no impact on the rheological properties and SAXS curves, while a “Uniform Shell Model” can fit the SAXS data very well probably due to the uniform filling of polyelectrolyte chains among SPB. When increasing the salt concentration from 10?5 to 10?3 M, the so‐called “polyelectrolyte peak” appears at middle to high q range in SAXS curves which means the overlapped polyelectrolyte chains are associated under the bridging effect of counterions, which disappears at higher salt concentration due to the screening effect of further added salts. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 405–413  相似文献   

11.
We report the application of an ultrasonic shear wave reflection technique for the investigation of film formation and crystallization kinetics of one amorphous and two semicrystalline polychloroprene samples with different gel content. Both isothermal and temperature-dependent measurements of the complex dynamic shear modulus (G* = G′ + iG″) have been performed at a frequency of 5.32 MHz. The process of film formation during the evaporation of water is expressed by a stepwise increase of the shear modulus. For the semicrystalline samples a further increase, which is due to crystallization, can be observed. Film formation and crystallization are delayed for the sample with high gel content and its minor final modulus is explained by a lower degree of crystallinity. The time-dependent increase of the shear modulus due to the growth of spherulites has been analyzed by the Avrami equation combined with the Kerner model for the modulus of a two-phase composite (spherulites in an amorphous matrix). The dynamic shear modulus for the spherulites has been estimated by a model introduced by Halpin and Kardos. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2949–2959, 1998  相似文献   

12.
Dynamic rheological measurements were carried out on blends of poly(ether ether ketone) (PEEK)/poly(aryl ether sulfone) (PES) in the melt state in the oscillatory shear mode. The data were analyzed for the fundamental rheological behavior to yield insight into the microstructure of PEEK/PES blends. A variation of complex viscosity with composition exhibited positive–negative deviations from the log‐additivity rule and was typical for a continuous‐discrete type of morphology with weak interaction among droplets. The point of transition showed that phase inversion takes place at composition with a 0.6 weight fraction of PEEK, which agreed with the actual morphology of these blends observed by scanning electron microscopy. Activation energy for flow, for blend compositions followed additive behavior, which indicated that PEEK/PES blends may have had some compatibility in the melt. Variation of the elastic modulus (G′) with composition showed a trend similar to that observed for complex viscosity. A three‐zone model used for understanding the dynamic moduli behavior of polymers demonstrated that PEEK follows plateau‐zone behavior, whereas PES exhibits only terminal‐zone behavior in the frequency range studied. The blends of these two polymers showed an intermediate behavior, and the crossover frequency shifted to the low‐frequency region as the PEEK content in PES increased. This revealed the shift of terminal‐zone behavior to low frequency with an increased PEEK percentage in the blend. Variation of relaxation time with composition suggested that slow relaxation of PEEK retards the relaxation process of PES as the PEEK concentration in the blend is increased because of the partial miscibility of the blend, which affects the constraint release process of pure components in the blend. A temperature‐independent correlation observed in the log–log plots of G′ versus loss modulus (G″) for different blend systems fulfilled the necessary condition for their rheological simplicity. Further, the composition‐dependent correlations of PEEK/PES blends observed in a log–log plot of G′ versus G″ showed that the blends are either partially miscible or immiscible and form a discrete‐continuous phase morphology. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1548–1563, 2004  相似文献   

13.
The dynamic viscoelastic behavior of a concentrated solution of silk fibroin dissolved in the “MU” solvent is measured. The dynamic viscosity η′ and dynamic elasticity G′ increase with increasing concentration of silk fibroin at constant frequency; however, the increasing frequency decreases η′ and G′ at a constant concentration of silk fibroin. When the mixing ratio of C2H5OH/H2O in the “MU” solvent is increased at a constant concentration of LiBr·H2O, η′ and G′ sharply increase at constant frequency. If the LiBr·H2O concentration is varied in the “MU” solvents whose ratio of C2H5OH/H2O is kept constant at 100 : 0, both η′ and G′ are greater for LiBr·H2O concentrations of 50% by weight compared to concentrations of 40% by weight. The dependence of η′ on the temperature of the solution can be predicted by Andrade's viscosity equation. Spinnability improves when the SF concentration is increased. © John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1955–1959, 1997  相似文献   

14.
Isothermal pressure relaxation as a function of temperature in two pressure ranges has been measured for polystyrene using a self-built pressurizable dilatometer. A master curve for pressure relaxation in each pressure regime is obtained based on the time–temperature superposition principle, and time–pressure superposition of the two master curves is found to be applicable when the master curves are referenced to their pressure-dependent Tg. The pressure relaxation master curves, the shift factors, and retardation spectra obtained from these curves are compared with those obtained from shear creep compliance measurements for the same material. The shift factors for the bulk and shear responses have the same temperature dependence, and the retardation spectra overlap at short times. Our results suggest that the bulk and shear response have similar molecular origin, but that long-time chain mechanisms available to shear are lost in the bulk response. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3375–3385, 2007  相似文献   

15.
16.
Aqueous solutions of a poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymer, Pluronic F108 (PEO133PPO50PEO133), ranging from 1 to 35 wt %, were studied with differential scanning microcalorimetry and rheology. The thermoreversible micellization and gelation were examined through a heating process and a subsequent cooling process at a fixed rate of 1 °C/min. The critical micellization temperature (CMT), determined by the onset temperature of the endothermic peak in the heating process, was a decreasing function of the F108 concentration. A small secondary endothermic peak appeared only when the polymer concentration was 22.5 wt % or higher, indicating that there was a sol–gel transition but that the gelation was a nearly athermic process. Upon heating, an abrupt increase was observed in both the dynamic storage modulus (G′) and dynamic loss modulus (G″) within a narrow temperature range. TG′, the temperature for the transition in G′, was a linear decreasing function of the polymer concentration and different from CMT. TG′ tended to approach CMT with an increasing F108 concentration. Beyond this transition, G′ reached a plateau, and the plateau increased in height and broadened with the polymer concentration. The value of G′ at 70 °C (G70) could be approximately scaled with concentration c by G70c7.3. In addition, the definition for a gel to obey G′ > G″ was valid only when c was greater than 22.5 wt %, and this was in agreement with the secondary endothermic peak found with differential scanning calorimetry. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2014–2025, 2004  相似文献   

17.
The effect of temperature on dynamic viscoelastic measurements of miscible poly (vinyl chloride) (PVC)/ethylene‐vinyl acetate–carbon monoxide terpolymer (EVA‐CO) and immiscible PVC/high‐density polyethylene (HDPE) and PVC/chlorinated polyethylene (CPE) molten blends is discussed. PVC plasticized with di(2 ethyl hexyl) phthalate (PVC/DOP) and CaCO3 filled HDPE (HDPE/CaCO3) are also considered for comparison purposes. Thermorheological complexity is analyzed using two time–temperature superposition methods: double logarithmic plots of storage modulus, G′, vs. loss modulus, G″, and loss tangent, tan δ, vs. complex modulus, G*, plots. Both methods reveal that miscible PVC/EVA‐CO and PVC/DOP systems are thermorheologically complex, which is explained by the capacity of PVC to form microdomains or crystallites during mixing and following cooling of the blends. For immiscible PVC/HDPE and PVC/CPE blends the results of log G′ vs. log G″ show temperature independence. However, when tan δ vs. log G* plots are used, the immiscible blends are shown to be thermorheologically complex, indicating that the morphology observed by microscopy and constitued by a PVC phase dispersed in a HDPE or CPE matrix, is reflected by this rheological technique. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 469–477, 2000  相似文献   

18.
The rheological behavior of polyaniline‐(±champhor‐10‐sulfonic acid)0.5m‐cresol [PANI‐CSA0.5m‐cresol] gel nanocomposites (GNCs) with Na‐montmorillonite clay (intercalated tactoids) is studied. The shear viscosity exhibits Newtonian behavior for low shear rate (<2 × 10?4 s?1) and power law variation for higher shear rate. The zero shear viscosity (η0) and the characteristic time (λ) increase but the power law index (n) decrease with increase in clay concentration. In the GNCs storage modulus (G′) and loss modulus (G″) are invariant with frequency in contrast to the pure gel. The G′ and G′ exhibit the gel behavior of the GNCs up to 105 °C in contrast to the melting for the pure gel at 75.7 °C. The percent increase of G′ of GNCs increases dramatically (619% in GNC‐5) with increasing clay concentration. The conductivity values are 10.5, 5.65, 5.51, and 4.75 S/cm for pure gel, GNC‐1, GNC‐3, and GNC‐5, respectively, promising their possible use in soft sensing devices. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 28–40, 2008  相似文献   

19.
In this work, we have investigated by DSC the structural relaxation of amorphous polymethyl(α-n-alkyl)acrylates in which it is possible to change the length of the alkyl chain. We have evaluated the Narayanaswamy parameter, x, which controls the relative contribution of temperature and of structure to the relaxation time, the apparent activation energy, Δh*, and the nonexponentiality parameter, β, of the stretched exponential response function. The results suggest that x increases while Δh* decreases and β remains constant as the length of the side chain increases. This allows us to comment on the effect of chemical modification on the relaxation kinetics. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 583–593, 1998  相似文献   

20.
The structural relaxation process in styrene-acrylonitrile copolymer has been characterized by means of differential scanning calorimetry (DSC) experiments. The results in the form of heat capacity, cp(T), curves are analyzed using a model for the evolution of the configurational entropy during the process recently proposed by the authors.11,12 The model simulation allows one to determine the enthalpy (or entropy) structural relaxation times and the β parameter of the Kohlrausch-Williams-Watts equation characterizing the width of the distribution of relaxation times. This material parameters are compared with their analogues determined from the dielectric and dynamic-mechanical relaxation processes. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2201–2217, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号