首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photopolymerization of the vinyl monomer (M) of methyl methacrylate (MMA) was kinetically studied by using near-UV/visible light at 40°C and employing a morpholine (MOR)–sulfur dioxide (SO2) charge-transfer (C-T) complex as the photoinitiator. The rate of polymerization (RP) was found to be dependent on the morpholine: sulfur dioxide mole ratio; the 1 : 2 (MOR–SO2) complex acted as the latent initiator complex C which underwent further complexation with the monomer molecules to give the actual initiating complex I. Using the 1 : 2 (MOR–SO2) C-T complex as the latent initiator, the observed kinetics may be expressed as RP [MOR–SO2]0.27[M]1.10. Benzoquinone behaved as a strong inhibitor. Polymers obtained tested positive for the incorporation of a sulphonate-type end group. Polymerization followed a radical mechanism. Kinetic nonideality as revealed by a low initiator exponent and monomer exponent of greater than unity was explained on the basis of a prominent primary radical termination effect. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1973–1979, 1998  相似文献   

2.
Polymerization of MMA was carried out under visible light (440 nm) with the use of pyridine–bromine (Py–Br2) charge-transfer (CT) complex as the photoinitiator. Initiator exponent and intensity exponent were 0.5 and 0.43, respectively, and the monomer exponent was found to be dependent on the nature of the solvent or diluent used. The Polymerization was inhibited in the presence of hydroquinone, but oxygen had very little inhibitory effect. An average value of kp2/kt for this polymerization system was 1.19 × 10?2, and the activation energy of photopolymerization was 4.95 kcal/mole. Kinetic data and other evidence indicate that the overall polymerization takes place by a radical mechanism. With Py–Br2 complex as the photoinitiator, the order of polymerizability at 40°C was found to be MMA, EMA ? Sty, MA.  相似文献   

3.
Polymerization of MMA was done in the presence of visible light (440 nm) with the use of N-bromosuccinimide (NBS) as the photoinitiator. The initiator exponent and intensity exponent were 0.5, and the monomer exponent was found to be unity. The polymerization was inhibited in the presence of hydroquinone. The average kp2/kt for this photopolymerization system was found to be 0.296 × 10?2 and the activation energy of photopolymerization was 4.67 kcal/mole. Kinetic and other evidence indicate that the overall polymerization takes place by a radical mechanism. With NBS as the photoinitiator, the order of polymerizability at 40°C was MMA, EMA ? MA ? VA, and styrene could not be polymerized under similar conditions.  相似文献   

4.
Polymerization of MMA was carried out in presence of visible light (440 nm), quinoline-bromine charge-transfer complex being used as the photoinitiator. The initiator exponent was observed to be 0.5 up to 0.014 M initiator concentration; when chloroform was used as the solvent, the monomer exponent was found to be unity. The polymerization was inhibited in presence of hydroquinone but little inhibitory effect was observed in the presence of air. An average value of k2p/kt for this photopolymerization system was found to be (1.08 ± 0.22) × 10-2. Kinetic and other evidence indicates that the overall polymerization takes place by a radical mechanism.  相似文献   

5.
Free radical photopolymerization of methyl methacrylate (MMA) in visible light was studied at 40°C using sulfur dioxide-halogen (Cl2, Br2, and I2) combinations as photoinitiators. Of the three SO2/halogen systems, only the SO2/Br2 combination formed an interesting initiating system due to 1:1 complexation between the two components resulting in pronounced enhancement of the rate of photopolymerization over those produced by each of the initiator components when used as a lone photoinitiator. Photopolymerization of MMA induced by (SO2-Br2) complex (1:1) as the photoinitiator exhibited a low initiator exponent value, 0.26, and a monomer exponent value of 1.5. Kinetic nonidealities were explained on the basis of (a) monomer-dependent chain initiation and (b) significant initiator-dependent chain termination along with the usual bimolecular mode of chain termination.  相似文献   

6.
Low concentrations (0.001–0.03M) of chlorine easily induce photopolymerization of MMA at 40°C. Kinetic data indicate that polymerization follows a radical mechanism involving complexation of monomer by the initiator and initiation takes place through radical generation during photodecomposition of the initiator-monomer complex. Termination appears to take place bimolecularly. The kp2/kt value for MMA polymerization at 40°C was found to be 0.83 × 10?2. Rates of chlorine-initiated photopolymerization were found to decrease in the order MMA, EMA ? VA, Sty > MA.  相似文献   

7.
Kinetics of photopolymerization of MMA at 40°C with the use of iodine as the photoinitiator was studied. At low range of iodine concentration (< 0.0004M), the rate of polymerization was proportional to square root of iodine concentration and the monomer exponent was 2.5, while at a higher range of iodine concentration, (0.0005–0.002M) the initiator exponent and monomer exponent were zero and 3.6–3.8 (i.e., close to 4), respectively. The chain-transfer constant of iodine at 40°C was found to be 6.0. Polymerization was found to be largely inhibited in the presence of relatively high concentrations of iodine (> 0.005M) and also in presence of hydroquinone. Kinetic and other data indicate a radical mechanism of polymerization involving complexation of monomer molecules with iodine prior to radical generation, and termination is believed to take place bimolecularly at low iodine concentrations and unimolecularly, involving reaction with iodine, at high iodine concentrations (initiator termination).  相似文献   

8.
Isatoic anhydride (IA) alone did not initiate photopolymerization of methyl metacrylate (MMA) at 40°C when exposed to visible light for about 180 min. But IA, when used in combination with bromine (Br2) as the initiator, initiated the photopolymerization of MMA readily under the same conditions. This behavior was explained by the formation of a donor-acceptor type of complex between IA and Br2 in the presence of MMA. The polymerization was found to proceed via a free radical mechanism and the radical generation process was considered to follow an initial complexation reaction between the initiator components and monomer. The complex initiator showed nonideal kinetics for the present system (initiator exponent < 0.5) and was analyzed. The monomer exponents varied from 0.83 to 1.15 normally depending on the nature of solvent used. Initiator-dependent chain termination was significant as well as the bimolecular mode of chain termination. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
Polymerization of MMA was carried out in the presence of visible light (440 nm) with the use of γ-picoline-bromine charge transfer complex as the initiator. The rate of polymerization Rp increases with increasing monomer concentration and the monomer exponent was computed to be unity. The rate of polymerization increases with increasing initiator concentration. The initiator exponent was computed to be 0.5. The reaction was carried out at three different temperatures and the overall activation energy was calculated to be 4.5 kcal/mol. The polymerization was inhibited in the presence of hydroquinone. Kinetic and other evidence indicates that the overall polymerization takes place by a radical mechanism.  相似文献   

10.
Polymerization behavior of meta-naphthoquinone methide, 3,4-benzo-6-methylenebicyclo[3.1.0]hex-3-ene-2-one ( 1 ), was studied. Radical initiator 2,2′-azobis(isobutyronitrile) (AIBN) induced polymerization of 1 , but ionic initiators potassium tert-butoxide, butyllithium, and boron trifluoride etherate did not. Polymerization of 1 proceeded via ring-opening and aromatization to give a polymer with head-to-tail monomer unit placement. Compound 1 copolymerized with methyl methacrylate (MMA) in the presence of AIBN to obtain the monomer reactivity ratios r1 ( 1 ) = 0.28 ± 0.07 and r2(MMA) = 0.39 ± 0.02 at 60°C and Q and e values of Q = 1.04 and e = −1.03, indicating that 1 is a conjugative and electron-donating monomer. Ring-opening and aromatization of 1 also took place in the copolymerization. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 741–746, 1997  相似文献   

11.
The polymerization of MMA was kinetically studied in the presence of visible light (using a 125-W high-pressure mercury vapor lamp with fluorescent coating, without a filter), a THF—bromine charge-transfer complex being used as the photoinitiator. The initiator exponent was 0.5 in bulk polymerization. The monomer exponent varied from about 1.2 to about 2.5, depending on the nature of the solvent used; the initiator exponent also varied in diluted systems, depending on the nature and proportion of the solvent, the variation being from a value of 0.5 in bulk system to zero or almost zero at about 25% (v/v) solvent concentration. Other kinetic parameters, viz., kp2/kt and the activation energy for polymerization, were determined and are reported. Kinetic and other evidence indicates that the photopolymerization takes place by a radical mechanism and termination is bimolecular in nature in bulk systems; in dilute systems, termination by initiator complex assumes predominance, particularly at high solvent concentrations (≥25% v/v).  相似文献   

12.
Photopolymerization of MMA was carried out at 40°C in diluted systems by use of quinolinebromine (Q–Br2) charge-transfer complex as the initiator and chloroform, carbon tetrachloride, chlorobenzene, dioxane, THF, acetone, benzene, toluene, quinoline, and pyridine as solvents. The results showed variable monomer exponents ranging from 1 to 3. For chloroform, carbon tetrachloride, and chlorobenzene, the monomer exponent observed was unity; for other solvents used, the value of the same exponent was much higher (between 2 and 3). Initiation of polymerization is considered to take place through radicals generated in the polymerization systems by the photodecomposition of (Q–Br2)–monomer complex (C) formed instantaneously in situ on addition of the Q–Br2 complex in monomer. The kinetic feature of high monomer exponent is considered to be due to higher order of stabilization of the initiating complex (C) in presence of the respective solvents. In the presence of the retarding solvents, very low or zero initiator exponents were also observed, depending on the nature and concentration of the solvents used. The deviation from the square-root dependence of rate on initiator concentration becomes higher at high solvent and initiator concentrations in general. This novel deviation is explained on the basis of initiator termination, probably via degradative chain transfer involving the solvent-modified initiating complexes and the propagating radicals.  相似文献   

13.
Effects of pentavalent phosphorus compounds on the radical polymerization of methyl methacrylate (MMA) and styrene (St) were studied. Phosphorus oxychloride (Cl3P?O) and phenyl-phosphonic dichloride (C6H5Cl2P?O) were used. Polymerization was carried out in benzene at 50°C by the standard solution method, α,α′-azobisisobutyronitrile (AIBN) being used as the initiator. In the polymerization of MMA, both phosphorus compounds increased the rate of polymerization. NMR spectral data suggested that this increasing effect was due to the complex formation between each phosphorus compound and MMA monomer. In the case of polymerization of St, NMR data also indicated the formation of a complex between the phosphorus compound and St monomer. Both phosphorus compounds showed an increasing effect for the rate of polymerization. Though these increasing effects could be explained by the complex formation, the polymerization of St in the presence of Cl3P?O was especially found to be due to the cationic polymerization initiated simultaneously by Cl3P?O in addition to the radical polymerization. These phosphorus compounds acted as chain-transfer agents in both polymerization systems. The parameters (Qtr,etr) which indicate the reactivity of a chain-transfer agent were calculated from the observed values of chain-transfer constant for both polymerization systems.  相似文献   

14.
The kinetics of photopolymerization reactions of acrylamide initiated by copper (II)–bis(amino acid) chelates with amino acids glutamic acid, serine, or valine were studied at 30°C. The extent of monomer conversion increases with increased initiator concentration and falls off after reaching a maximum. Analysis of the results shows that for lower concentrations of the initiator, the rate of monomer disappearance is proportional to light absorption fraction f[monomer] and the square root of the intensity. At higher concentrations of the initiator, the rate of monomer disappearance is proportional to Fε/[initiator]1/2; the monomer exponent is 1.5 and the intensity exponent 0.5. Mutual termination of the radicals is proposed at lower concentrations of the initiator; at higher concentrations of the initiator termination of the initiator radical by the copper (II) complex along with mutual termination occurs. The initiator radical species is identified from flash photolysis studies of these complexes as the Cu(I)-coordinated radical. The effect of pH on the monomer conversion is explained. The data indicate a free-radical mechanism of polymerization and a reaction scheme is proposed for the polymerization reactions.  相似文献   

15.
Four new structures (o,o-diethyl dithiobisthioformate, isopropylxanthic disulfide, tetramethyldicarbonotrithioic diamide, and phenylacetyl disulfide) are proposed as photoiniferters for controlled photopolymerization reactions. Their photochemical properties, efficiency in controlling the photopolymerization of methyl methacrylate (MMA), and ability to photocrosslink a difunctional acrylate monomer [1,6-hexane diol diacrylate (HDDA)] are investigated. The rates of polymerization of MMA and HDDA and the number-average molecular weights (Mn's) and polydispersity indices (PDIs) of poly(methyl methacrylate) have been determined. The transient absorption spectra and interaction rate constants of the radicals have been measured. Both the (alkyloxythiocarbonyl)thiyl and (benzylcarbonyl)thiyl radicals are efficient in controlling a photopolymerization process. For a 40% monomer conversion obtained in a few minutes, the Mn values range from 6000 to 14,000, and the PDIs can reach 1.6–2.2. A fivefold reduction of the light intensity increases Mn by 25% and reduces PDI by 5%. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2436–2442, 2007  相似文献   

16.
The photopolymerization of MMA in visible light was studied at 45°C using IC13 as the photoinitiator. The initiator exponent was found to be 0.16 and the monomer exponent varied between 1.0 to 1.50, depending on the nature of the solvent. Analysis of the data revealed that the polymerization was induced by a free radical mechanism. Nonideality of the kinetics was explained on the basis of 1) Monomer-dependent chain initiation and 2) Initiator-dependent chain termination via degradative initiator transfer.  相似文献   

17.
The photopolymerization of methyl methacrylate (MMA) in visible light was studied at 40°C using the acridone-bromine (acridone-Br2) combination as the photoinitiator. The polymerization was found to proceed via a free radical mechanism, and the radical generation process was considered to follow an initial complexation reaction between monomer and each initiator component (acridone and Br2), followed by further interaction between these two initiator-monomer complexes. Kinetic data indicated a lower-order dependence of R on initiator concentrations (initiator exponent < 0.5). Initiator-dependent chain termination was signifi-cant along with the usual bimolecular mode of chain termination. The monomer exponent varied from about 1.00 to 2.00, depending on the nature of solvents used. The nonidealities in this system were also analyzed.  相似文献   

18.
Photopolymerization of MMA was carried out with quinaldine–bromine (QN–Br2) and lutidine–bromine (LU–Br2) charge-transfer complexes as initiators. The rate of polymerization Rp increased with rising monomer concentration and the monomer exponent was computed as unity. At first the rate of polymerization accelerated and then reduced as the initiator concentration was increased. The initiator exponent was 0.5. The reaction was carried out at three different temperatures and overall activation energy was calculated at 4.0 kcal/mol. The kinetic data and other evidence indicate that the overall polymerization takes place in a radical mechanism. A suitable mechanism is suggested.  相似文献   

19.
Polymerization of acrylamide (M) in the presence of ultrasound and peroxomonosulfate (PMS) was carried out for the first time for various concentration ranges of monomer and initiator and various temperatures at a constant frequency of 1 Mhz. The rate of polymerization Rp was found to increase with increase in the concentration of monomer and initiator and found to depend on [M] and [PMS]1/2. The rate of disappearance of initiator (-d[PMS]/dt) was also followed simultaneously under the experimental conditions and found to increase linearly with increase in [PMS]. A probable reaction mechanism was proposed on the basis of the observed results, and the individual rate constant were evaluated. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2715–2719, 1998  相似文献   

20.
Polymerization of 2‐methacryloyloxyethyl phosphorylcholine (MPC) was kinetically investigated in ethanol using dimethyl 2,2′‐azobisisobutyrate (MAIB) as initiator. The overall activation energy of the homogeneous polymerization was calculated to be 71 kJ/mol. The polymerization rate (Rp) was expressed by Rp = k[MAIB]0.54±0.05 [MPC]1.8±0.1. The higher dependence of Rp on the monomer concentration comes from acceleration of propagation due to monomer aggregation and also from retardation of termination due to viscosity effect of the MPC monomer. Rate constants of propagation (kp) and termination (kt) of MPC were estimated by means of ESR to be kp = 180 L/mol · s and kt = 2.8 × 104 L/mol · s at 60 °C, respectively. Because of much slower termination, Rp of MPC in ethanol was found at 60 °C to be 8 times that of methyl methacrylate (MMA) in benzene, though the different solvents were used for MPC and MMA. Polymerization of MPC with MAIB in ethanol was accelerated by the presence of water and retarded by the presence of benzene or acetonitrile. Poly(MPC) showed a peculiar solubility behavior; although poly(MPC) was highly soluble in ethanol and in water, it was insoluble in aqueous ethanol of water content of 7.4–39.8 vol %. The radical copolymerization of MPC (M1) and styrene (St) (M2) in ethanol at 50 °C gave the following copolymerization parameters similar to those of the copolymerization of MMA and St; r1 = 0.39, r2 = 0.46, Q1 = 0.76, and e1 = +0.51. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 509–515, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号